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Introduction

What are Variational Integrator Networks (VINs)!?

Motivation. Encode prior knowledge of the underlying physical laws that
govern the dynamical systems into the model design.

Example. Consider the Lagrangian Ly(q,q) = %qTng — Up(q), then the
Velocity-Verlet method

. h?
Ak+1 = Gk + hqx — ?Mg 1V Up(ay)

VUs(qk) + VU@(QkH))
2

Qet1 = Gk — hMg? <

can serve as the feed-forward architecture of the VIN.

!Saemundsson et al., Variational Integrator Networks for Physically Structured
Embeddings.
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Advantages of VINs

Compared to Hamiltonian neural networks that learns a parameterized
Hamiltonian by minimizing the loss function

oH . oH
il F M EA

VINs have the following advantages:

@ Automatically enforce symplecticity, momentum preservation, and
approximate energy conservation.

@ Do not need data to sufficiently cover the configuration space.
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In robotics and control applications (e.g., model-predictive control), we
want to model (qk,qk, uk) — (qk+1, qu).

We need to consider external forcing (e.g., control, damping, contact).
The Forced Variational Integrator Networks (FVINs)? was presented
for this purpose, following with the Lie Group Forced Variational

Integrator Networks (LieFVINs)3 on SE(3).

Goal. Understand forced variational integrators and extend LieFVINs on
the unit quaternion group S3.

2Havens and Chowdhary, Forced Variational Integrator Networks for Prediction and
Control of Mechanical Systems.

3Duruisseaux et al., Lie Group Forced Variational Integrator Networks for Learning
and Control of Robot Systems.
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Continuous Forced System

Notations. Configuration manifold @, control manifold U, Lagrangian
L: TQ — R, external force f; : TQ xU — T*Q.

Lagrange-d'Alembert principle.

T T
5/’umwna»w+/ fu(a(t), a(t), u(t)) - da() dt = 0
\0 B 0

-

action integral virtual work

subject to 0q(0) = dq(T) = 0.

Forced Euler-Lagrange equations.

e~ e = a(0).4(0),u(o).
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Discrete Forced System

Notations. Discrete Lagrangian Ly : Q X @ — R, discrete controlled
forces ff 1 Q x Q xU — T*Q.

Discrete Lagrange-d'Alembert principle.

8N LAk, k1) + 0o [y (Qks Grrts uk) - 00k + £ (Qk, ki1, Uk) - 0Qis1] = 0

~ 41 £ (a(1).a(1).u(1)-da(t)dt

subject to dqg = dqn = 0.

Forced Discrete Euler-Lagrange Equation.

D1La(ak, kt1) + DoLla(ak—1,ak) + £ (A, Qi1 uk) + £ (Ak—1, Gk, uk—1) = 0.

v
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Forced Discrete Legendre Transform

Define Ff*L,: Q x Q — T*Q by

F™ La(dk, dks1) = (Qkr1s DoLa(Qk, Qri) + £ (Qks Grts uk))
F™™ La(ak, ak+1) = (dk, —D1La(Ak, A1) — F (Qk Grt1, Uk))

so that Ff* [ is consistent with the continuous Legendre transform FL
when the discrete Lagrangian Ly and discrete forces fdjE are exact.

(g0, q1) > (q1,92)
(d0, Po) (91,p1) (42, p2)
FLd FLd
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Symplecticity and Forced Discrete Noether’'s Theorem

In general, we have dq) A dpj # qu,;Jr1 A dp’,'(Jrl since

0 = d’Ly(qx, dks1)
= dqj A dpj — daj_, Adpj
— [df; " (Qk, A1, uk) A dag + dfy7 Ak, Gigr, uk)) A dag ]

extra terms from forcing

Forced Discrete Noether's Theorem.
For a G-invariant discrete Lagrangian, if the discrete forces are orthogonal
to the group action in the sense that

(£ (Ak, Art1.uk), E@(ak)) + (£ (Ak, Grt1, uk), E@(ak+1)) = O

then the discrete momentum map Jy : Q X Q — g* is preserved.

v,
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Example Application of Forced VI
A recent application in robotics for modeling aerial maneuvers.

4
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Integrator Discretized Trajectory Optimization”
Hu Hanyang

m]

=

S3 Forced Variational Integrator Network

“Beck et al., “High Accuracy Aerial Maneuvers on Legged Robots using Variational

December 9, 2025




Outline

© Variational Integrator Network on R3 x S3

Hu Hanyang S° Forced Variational Integrator Network December 9, 2025 12/



Lagrangian on R3 x S3

Consider the Lagrangian L: TSE(3) —» R
. - O N e
Lo(x,x,R,R) = 5X Myx + oW Jow — Up(R)

where w = (RTR)Y € R3 2 50(3) is the angular velocity.

We can lift it to L : T(R® x §3) — R using the Lie group homomorphism
®:q— (2¢2 — 1)[+2q,q, + 29s[q.]x € SO(3), such that

A . ) 1. )
Lo(x,%,q,q) = EXTMex +2¢ 7 Jp& — Up(®(q))

where € = Im(q"q) since (a,4) = (9, a5) —> ($(q), 20(q)[¢] ).
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Forced Variational Integrator Network on R3 x S3

A straightforward extension to the result of Shen et al.®

_ W e
X1 = i+ hM P — My Vs Up(xi i) + hMG £

VxUs(Xi, i) + VxUp(Xks1, Ak+1)

Pki1 =Pk — h 5 TR

4 * * h —
Tk = _EG(Qk+1Qk)J6|m(qk+1Qk) + EH(Qk)vq Up(xk, qk) — fy

4 . . h
Tyl = EG(qquH)ngm(qquH) — §H(qk+1)Vq Up(Xk+1, Qk1) + £

where G(q) = qsI — [q,]x, H(q) = (—av, G(q)) and qx+1 = qx exp(&).
Left-trivialized momenta. Compute momenta in R3 2 (53)*

Tk = — To L D1La(Ax, Quq1) — fy
Tkt1 = ToLagy DoLa(Qi, Qrs1) + £
®Shen and Leok, Lie group variational integrators for rigid body problems using

quaternions.
Hu Hanyang
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Overcoming Double-Covering Issue

Observation. For any R € SO(3), ~}(R) = {£q} C S3.

How to fix this? To ensure consistency under this double covering, all
black-box components should satisfy the symmetry condition

Jo(a) = Jo(—aq), Up(x,q) = Us(x,—q), Fy(x,q,u) = F;(x,—q,u).
where Fei(x, q,u) are the models used to approximate the discrete forces.
y(a) = 5(Jo(a) + Jo(~a))

Op(x,0) = 5(Un(x, @) + Up(x, ~a))

) 1
Fi(xa.u) = S(F(x.a.u) + Fi(x, —a,u))
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Relationship with FVIN on SE(3)

Use the following mapping
(x, R, %,R) = (x,q,p, ) = (x,q, Mgx, 2Jy(R"TR)") € T*(R? x S%)
since p = Mygx, m = 4Jy¢ and 26 = w = (RTR)Y.

For the left-trivialized discrete forces fi* € R3 2 (s3)*, we also have
fRE = 135 € R3 = (s0(3))".
Te®

§ —— > 50(3)

Teo

(%) <——— (s0(3))°
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Ground-Truth Dynamics

6 = —15sinf + 3u

T=g0)u, g®)=1 m= % U(f) = 5(1 — cosb)

Figure: The inverted pendulum swingup problem in the OpenAl Gymnasium.
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Experiment Results

" pendulum angle " pendulum angle ! e

(a) Inertia matrix of (1) (b) Control gain of (1) (c) Energy conservation of (1)

= [ i L S R
penculum sngle

(e) Control gain of (2) (f) Energy conservation of (2)

" pendulum angle

(g) Inertia matrix of (3) (h) Control gain of (3) (i) Energy conservation of (3)

Figure: (1) Sign-invariance; (2) Fixed inertia matrix Jg; (3) Plain.
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Training/Testing Loss

—— S3FVIN sign invariance === S3FVIN sign invariance
—— SIFVIN fixed inertia 3 —=- SIFVIN fixed inertia
10~ = S3FVIN plain 107! = ==+ S3FVIN plain
—— SO3FVIN plain ' ==+ SOIFVIN plain
—— SO3FVIN rotmat2quat E\\ ~ =+ SO3FVIN roatmat2quat

1072 102

Training Loss
Test Loss

10-*
10

10-°

106 10-6

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
iterations iterations

Figure: Loss curves for different variants of S3FVIN and SO3FVIN. The
sign-invariant S3FVIN converges fastest and most stably. SO3FVIN can achieve
comparable performance by parameterizing each black-box component using the
transformation R — q, but exhibits less stable training.
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Conclusion

Key takeaways from this project:
@ Explicitly enforcing sign invariance is a simple yet essential inductive
bias for obtaining physically plausible results for S3FVIN;
@ Working directly with unit quaternions generally leads to faster and
more stable training than using 3 x 3 rotation matrices, largely due
to the more compact representation.
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