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Introduction

What are Variational Integrator Networks (VINs)1?

Motivation. Encode prior knowledge of the underlying physical laws that
govern the dynamical systems into the model design.

Example. Consider the Lagrangian Lθ(q, q̇) =
1
2 q̇

⊤Mθq̇− Uθ(q), then the
Velocity-Verlet method

qk+1 = qk + hq̇k −
h2

2
M−1

θ ∇Uθ(qk)

q̇k+1 = q̇k − hM−1
θ

(
∇Uθ(qk) +∇Uθ(qk+1)

2

)
can serve as the feed-forward architecture of the VIN.

1Saemundsson et al., Variational Integrator Networks for Physically Structured
Embeddings.
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Advantages of VINs

Compared to Hamiltonian neural networks that learns a parameterized
Hamiltonian by minimizing the loss function

LHNN =

∥∥∥∥∂Hθ

∂p
− q̇

∥∥∥∥+

∥∥∥∥∂Hθ

∂q
+ ṗ

∥∥∥∥
VINs have the following advantages:

1 Automatically enforce symplecticity, momentum preservation, and
approximate energy conservation.

2 Do not need data to sufficiently cover the configuration space.
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Motivation

In robotics and control applications (e.g., model-predictive control), we
want to model (qk , q̇k ,uk) 7→ (qk+1, q̇k+1).

We need to consider external forcing (e.g., control, damping, contact).

The Forced Variational Integrator Networks (FVINs)2 was presented
for this purpose, following with the Lie Group Forced Variational
Integrator Networks (LieFVINs)3 on SE(3).

Goal. Understand forced variational integrators and extend LieFVINs on
the unit quaternion group S3.

2Havens and Chowdhary, Forced Variational Integrator Networks for Prediction and
Control of Mechanical Systems.

3Duruisseaux et al., Lie Group Forced Variational Integrator Networks for Learning
and Control of Robot Systems.
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Continuous Forced System

Notations. Configuration manifold Q, control manifold U , Lagrangian
L : TQ → R, external force fL : TQ × U → T ∗Q.

Lagrange-d’Alembert principle.

δ

∫ T

0
L(q(t), q̇(t)) dt︸ ︷︷ ︸
action integral

+

∫ T

0
fL(q(t), q̇(t),u(t)) · δq(t) dt︸ ︷︷ ︸

virtual work

= 0

subject to δq(0) = δq(T ) = 0.

Forced Euler-Lagrange equations.

∂L

∂q
− d

dt

∂L

∂q̇
= fL(q(t), q̇(t),u(t)).
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Discrete Forced System

Notations. Discrete Lagrangian Ld : Q × Q → R, discrete controlled
forces f ±d : Q × Q × U → T ∗Q.

Discrete Lagrange-d’Alembert principle.

δ
∑N−1

k=0 Ld(qk ,qk+1) +
∑N−1

k=0 [f −d (qk ,qk+1,uk) · δqk + f +d (qk ,qk+1,uk) · δqk+1]︸ ︷︷ ︸
≈
∫ tk+1
tk

fL(q(t),q̇(t),u(t))·δq(t)dt

= 0

subject to δq0 = δqN = 0.

Forced Discrete Euler-Lagrange Equation.

D1Ld(qk ,qk+1) + D2Ld(qk−1,qk) + f −d (qk ,qk+1,uk) + f +d (qk−1,qk ,uk−1) = 0.
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Forced Discrete Legendre Transform

Define Ff±Ld : Q × Q → T ∗Q by

Ff+Ld(qk ,qk+1) = (qk+1,D2Ld(qk ,qk+1) + f +d (qk ,qk+1,uk))

Ff−Ld(qk ,qk+1) = (qk ,−D1Ld(qk ,qk+1)− f −d (qk ,qk+1,uk))

so that Ff±Ld is consistent with the continuous Legendre transform FL
when the discrete Lagrangian Ld and discrete forces f ±d are exact.

(q0, p0) (q1, p1) (q2, p2)

(q0, q1) (q1, q2)
FLd

F̃Ld F̃Ld

Ff−Ld Ff+Ld Ff−Ld Ff+Ld
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Symplecticity and Forced Discrete Noether’s Theorem

In general, we have dqik ∧ dpik ̸= dqjk+1 ∧ dpjk+1 since

0 = d2Ld(qk ,qk+1)

= dqik ∧ dpik − dqjk+1 ∧ dpjk+1

− [df −i
d (qk ,qk+1,uk) ∧ dqik + df +j

d (qk ,qk+1,uk)) ∧ dqjk+1]︸ ︷︷ ︸
extra terms from forcing

.

Forced Discrete Noether’s Theorem.

For a G -invariant discrete Lagrangian, if the discrete forces are orthogonal
to the group action in the sense that

⟨f −d (qk ,qk+1,uk), ξQ(qk)⟩+ ⟨f +d (qk ,qk+1,uk), ξQ(qk+1)⟩ = 0

then the discrete momentum map Jd : Q × Q → g∗ is preserved.
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Example Application of Forced VI

A recent application in robotics for modeling aerial maneuvers.4

4Beck et al., “High Accuracy Aerial Maneuvers on Legged Robots using Variational
Integrator Discretized Trajectory Optimization”.
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Lagrangian on R3 × S3

Consider the Lagrangian L : TSE(3) → R

Lθ(x, ẋ,R, Ṙ) =
1

2
ẋ⊤Mθẋ+

1

2
ω⊤Jθω − Uθ(R)

where ω = (R⊤Ṙ)∨ ∈ R3 ∼= so(3) is the angular velocity.

We can lift it to L̂ : T (R3 × S3) → R using the Lie group homomorphism
Φ : q 7→ (2q2s − 1)I+ 2qvq⊤v + 2qs [qv ]× ∈ SO(3), such that

L̂θ(x, ẋ,q, q̇) =
1

2
ẋ⊤Mθẋ+ 2ξ⊤Jθξ − Uθ(Φ(q))

where ξ = Im(q∗q̇) since (q, q̇) = (q,qξ)
TqΦ−−→ (Φ(q), 2Φ(q)[ξ]×).
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Forced Variational Integrator Network on R3 × S3

A straightforward extension to the result of Shen et al.5

xk+1 = xk + hM−1
θ pk −

h2

2
M−1

θ ∇xUθ(xk ,qk) + hM−1
θ f x−d

pk+1 = pk − h
∇xUθ(xk ,qk) +∇xUθ(xk+1,qk+1)

2
+ f x+d + f x−d

πk = −4

h
G (q∗k+1qk)JθIm(q∗k+1qk) +

h

2
H(qk)∇qUθ(xk ,qk)− f q−d

πk+1 =
4

h
G (q∗kqk+1)JθIm(q∗kqk+1)−

h

2
H(qk+1)∇qUθ(xk+1,qk+1) + f q+d

where G (q) = qsI− [qv ]×, H(q) = (−qv ,G (q)) and qk+1 = qk exp(ξk).

Left-trivialized momenta. Compute momenta in R3 ∼= (s3)∗

πk = −T ∗
e LqkD1Ld(qk ,qk+1)− f −d

πk+1 = T ∗
e Lqk+1

D2Ld(qk ,qk+1) + f +d
5Shen and Leok, Lie group variational integrators for rigid body problems using

quaternions.
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Overcoming Double-Covering Issue

Observation. For any R ∈ SO(3), Φ−1(R) = {±q} ⊆ S3.

How to fix this? To ensure consistency under this double covering, all
black-box components should satisfy the symmetry condition

Jθ(q) = Jθ(−q), Uθ(x,q) = Uθ(x,−q), F±
θ (x,q,u) = F±

θ (x,−q,u).

where F±
θ (x,q,u) are the models used to approximate the discrete forces.

Ĵθ(q) =
1

2
(Jθ(q) + Jθ(−q))

Ûθ(x,q) =
1

2
(Uθ(x,q) + Uθ(x,−q))

F̂±
θ (x,q,u) =

1

2
(F±

θ (x,q,u) + F±
θ (x,−q,u))
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Relationship with FVIN on SE(3)

Use the following mapping

(x,R, ẋ, Ṙ) 7→ (x,q,p, π) = (x,q,Mθẋ, 2Jθ(R
⊤Ṙ)∨) ∈ T ∗(R3 × S3)

since p = Mθẋ, π = 4Jθξ and 2ξ = ω = (R⊤Ṙ)∨.

For the left-trivialized discrete forces f q±d ∈ R3 ∼= (s3)∗, we also have

f R±d = 1
2 f

q±
d ∈ R3 ∼= (so(3))∗.

s3 so(3)

(s3)∗ (so(3))∗

TeΦ

T ∗
eΦ
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Ground-Truth Dynamics

θ̈ = −15 sin θ + 3u

τ = g(θ)u, g(θ) = 1, m = 1
3 , U(θ) = 5(1− cos θ)

Figure: The inverted pendulum swingup problem in the OpenAI Gymnasium.
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Experiment Results

Figure: (1) Sign-invariance; (2) Fixed inertia matrix Jθ; (3) Plain.
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Training/Testing Loss

Figure: Loss curves for different variants of S3FVIN and SO3FVIN. The
sign-invariant S3FVIN converges fastest and most stably. SO3FVIN can achieve
comparable performance by parameterizing each black-box component using the
transformation R 7→ q, but exhibits less stable training.
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Conclusion

Key takeaways from this project:

1 Explicitly enforcing sign invariance is a simple yet essential inductive
bias for obtaining physically plausible results for S3FVIN;

2 Working directly with unit quaternions generally leads to faster and
more stable training than using 3× 3 rotation matrices, largely due
to the more compact representation.
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