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1 Introduction

The success of deep learning methods—particularly their flexibility, expressiveness, and remarkable
ability to generalize from a finite dataset—may appear counterintuitive at first, as such models are often
highly overparameterized yet still avoid overfitting. This can be attributed to the appropriate inductive
biases embedded within the design of neural network architecture, which, according to the no-free-lunch
theorem [I1]], are essential for achieving good generalization performance in specific problem domains.
When applying neural networks to modeling physical systems, particularly Hamiltonian systems, it is
also desirable to encode prior knowledge about the underlying physical laws into the model design.

Specifically, consider a Hamiltonian system
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where q and p denote the coordinates and momenta, respectively, and H(p,q) is the Hamiltonian
representing the total energy of the system. Suppose we are only given trajectories {(q:, p¢)}i¥; as data
samples, how can we model the dynamics by a neural network model while preserving the conservation
laws of the system? Moreover, is it possible to extend the modeling framework to incorporate energy
dissipation and external forcing, which are important for applications such as robotics control?

One straightforward strategy for incorporating physical priors into neural networks is through the
loss function, as exemplified by physics-informed neural networks (PINNs) [7]. In this framework, the
network is trained to minimize the residuals of the governing PDEs, along with the initial and boundary
conditions, thereby ensuring that the learned function approximately satisfies the physical constraints.
For Hamiltonian systems, a specialized approach known as the Hamiltonian Neural Network (HNN) [4]
has been proposed, which learns a parameterized Hamiltonian Hy to minimize the following objective:

Lunn = ’ %"ﬁe - QH + ‘ 6877—5: +I')H (1.2)
where the training targets q and p may be obtained from analytic time derivatives or finite-difference
approximations of the observed trajectories. After training, the model predicts the dynamics by integrat-
ing equation with a numerical integrator (e.g., a fourth-order Runge-Kutta method). A potential
limitation of loss-based approaches is that they typically require training data that sufficiently covers
the configuration space to achieve good generalization.

An alternative approach is to focus on inference rather than the loss function. By interpreting a deep
residual network as an Euler discretization of an underlying ODE system [2], one can replace the standard
Euler step with a geometric numerical integrator, thereby preserving desired invariants such as energy
or momentum. This idea is exemplified by the Variational Integrator Network (VIN) [§]. In contrast
to HNNs [4], VINs explicitly enforce conservation through their inference scheme, which accounts for
their reported advantages over HNNs in low- and moderate-data regimes [8]. For instance, consider a
parameterized Lagrangian

Lo(a, ) = 5a Modt — U(a) (1.3)

and the Velocity-Verlet method
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Qrt1 = Qe — AM, " (

can then serve as the feed-forward architecture of the VIN. The parameters 6 can be trained by matching
model roll-outs to observed trajectories, analogous to training a black-box dynamics model.
The VIN framework comes with the following advantages:



1. VINs inherit the desirable properties of variational integrators, including symplecticity, momentum
conservation, and approximate energy conservation. Moreover, the order of accuracy of a variational
integrator is determined by how well the discrete Lagrangian approximates the exact discrete
Lagrangian, as established by variational error analysis [6].

2. VINs enjoy the flexibility of using a black-box network Uy for potential energy modeling. Meantime,
the notions of kinetic and potential energy increase interpretability.

In this project, our focus is on forced variational integrators, which enable data-efficient and physics-
constrained dynamics modeling in control applications.

2 Discrete Variational Mechanics with Forces

2.1 Forced Discrete Systems

In this section, we overview the discrete variational principles underlying forced variational integrators
following the presentation in [6]. We start with the continuous setting: consider a configuration manifold
Q@ with a Lagrangian L : TQQ — R and a control manifold / with an external force fr, : TQ xU — T*Q,
the Hamilton’s principle is modified to the Lagrange-d’Alembert principle

T T
5/0 L((l(t),fl(t))dH/o fu(a(®), a(t),u(t)) - éq(t) dt =0 (2.1)

action integral virtual work

subject to dq(0) = dq(T) = 0, where q : [0,T] — Q is the true path and u: [0,7] — U is the control.
In the discrete setting, we consider the discrete Lagrangian Ly : QX — R and the discrete controlled
forces f;t :Q X Q xU — T*Q which approximates the virtual work by

tht1
/ fr(a@®),at),u(t)) - da(t)dt ~ f; (ak, k1, W) - 0ax + £ (ks A1, Uk) - 041 (2.2)
tk

then the true discrete trajectory {qj}i_, w.r.t. the control sequence {uy}n_,' satisfies the discrete
Lagrange-d’Alembert principle

N1 N1
) Z Lq(qk, qk+1) + [f7 (e Qrt1, wg) - 6Qk + £ (Qk, A1, Wg) - dQpt1] = 0 (2.3)
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subject to dqg = dqny = 0. Using this constraint and discrete integration by parts, we have

N-1 N-1
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[D1La(Qk; Qk+1) + DaLa(Qr—1,9k) + [ (e, Qet1, W) + fof (-1, Qies We—1)] - 0

which implies the forced discrete Euler-Lagrange equations

DiLa(ar, k+1) + DaLa(qe—1,qx) + f; (A, Qer1, we) + £ (Qr—1, dr, up—1) = 0. (2.5)



Fix the control sequence {uk},]j;(f, we can define the forced discrete Legendre transform F/*L, :
QxQ —T*Q to be
F/* L : (ak, ari1) = (A1, Pei) = (Qitt, DaLa(ar, aer1) + £ (ars Qrrs, u))
F/~ L : (aks arr1) = (ak, Pr) = (Qk, —D1La(Qr, ri1) — f7 (A, ry, ug))

so that the momenta {pk}ffvzo are well-defined by the forced discrete Euler-Lagrange equations ([2.5) and
the connection between the discrete and continuous systems in (2.10) makes sense. Moreover, we can
define the forced discrete Fuler-Lagrange map and Hamiltonian map by

Fr,=F""Ly) o (F"Ly): (ar—1,9k) — (Qks Ait1)
FLd =F/*Lg0 Fp,o (]FHELdV1 (ak, Pr) = (Ak+1, Prt1)

(2.6)

(2.7)

respectively.

Finally, we may establish a correspondence between the continuous and discrete mechanics with
forces, so that the variational error analysis for the unforced case may still apply. We define the exact
discrete Lagrangian and exact discrete forces to be

h
L2 (o, qu, ) = /0 L(qo. (£), 0.0 (1))t

" 9qo,1(t)

f7 (qo a1, h) = ; fr(qo1(t), 0.1 (t),u(t)) - qudt (2.8)
h
1 (o an, ) = /0 fr(a0.(8), dn.1 (1), u(®)) f’qg;;”dt

where qg 1 : [0, h] = @ is the solution of the Lagrange-d’Alembert principle (2.1)) with the control input
u : [0,h] — U and boundary conditions qg.1(0) = qo and qo1(1) = qi. Notice that with the exact
discrete forces ff * the approximation in 1) becomes exact
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= ¥ (a0, a1, h) - 6qo + ¥ (qo,q1,h) - dau

(2.9)
We can compute the forced discrete Legendre transform using integration by parts
]FfiLdE(qu qi1, h) = *DlLE(QOa qi1, h) - de_ (qu qi1, h)
h . h
OL O0qo1 , OL 0do / . Jqo,1(t)
= — —_— : _— = | dt — t t t)) ————=dt
/0 [8q 90 9q4  0qo . fr(ao,1(t), qo,1(t), u(t)) a0
h h
OL dOdL . 0do.1 OL 0qo1
= _ = t t MK Sdt— | == J
/0 [8q dt 94 Jr(do,1(t), o1 (t), u( ))] a0 {8('1 a0 |,
= 0 by the forced Euler-Lagrange equation
oL
= — 0),qo.1(0
94 (QO,l( ), Clo,l( ))
= FL(qo,1(0),40,1(0))
(2.10)

where FL : TQ — T*Q is the standard Legendre transform, and F/*L¥(qo, q1,h) = FL(qo1(1),d0.1(1))
following similar calculations. Notice that we have used the forced Euler-Lagrange equation, which is the
continuous version of and can be derived from the Lagrange-d’Alembert principle (2.1]). Since the
forced Hamiltonian and Lagrangian vector fields are also related by the standard Legendre transform,
this shows that the forced exact discrete system is still equivalent to the forced continuous system.



2.2 Preservation of Symplecticity and Momentum

In the forced setting, using the forced discrete Legendre transform (2.6), we can write

0 = d*La(ar, dr+1)

oL ; oL
=d ddef" d qu-',-l
dq;, aqk+1
i —i i J (2.11)
= d ((=pk — f7 (e o1, u))dag + (P — 77 (ar i, we))dal. )

=dqj, Adp}, — dq]_; Adpl,; — [df; (qk, Qe+, W) Add, + df ] (qr, drs, u)) A da) ]

extra terms from forcing

which implies that dq}, A dp}, # dqj, A dpj, 41 in general due to the presence of forcing, i.e. the forced
discrete Hamiltonian map FLd : (dk, Pk) — (Qgr1, Pk+1) is not necessarily symplectic.

Furthermore, suppose we have a diagonal action ®@*Q : G x Q@ x Q@ — Q x Q of a group G on @ x Q
and the discrete Lagrangian is G-invariant such that

La(g - dk, 9" Ar+1) = La(Qk, dk+1), Vg e G (2.12)
then the discrete momentum map Jg : @ x @ — g* defined by
(Ja(ar, A1), &) == (J(FI* La(ak, ar11)), €) (2.13)

can be preserved by the forced discrete Lagrangian map Fr,, under certain conditionsﬂ
Specifically, let £ € g*, we have Lg(exp(h)-qg, exp(hf) -qr+1) = La(qk, dx+1). Taking the derivative
over h and evaluate at h = 0, we have the following identity

(D1La(qr, ar+1),€q(ax)) + (D2La(dr, dr+1), {q(dr+1)) = 0. (2.14)
Pair the LHS of the forced discrete Euler-Lagrange equation (2.5) with {g(qx) and use (2.14)), we have
0

(D1La(ak, qr+1) + DoLa(ar—1,qr) + [ (A, Q1. wk) + fF (Qre—1, 9k we—1), o (ar))
—(DaLa(dk; dr+1),$@(Ar+1)) + (D2La(qr—1,ax), {q(ar))
+ (f7 (A Art1, wn), Eo(an)) + (i (Ar—1, ar, we—1), €0 (aw))

= —(DaoLa(ar, dk+1) + £ (ks At 1, Uk), €0 (Art1))
+ (DoLa(ar—1,qk) + f3 (Qe—1, 9k, uk—1), &0 (qk)) (2.15)
+ (f (aws arr1s ur), Eq(an)) + (f4 (aw: Qrr1s ur), Eo(anr1))

= —(F* La(ak, qr+1), €0 (r+1)) + (F/ T La(ar—1, ar), &g (ax))
+ ([ Ak A1, wr), E(ar)) + (f (Ak, Ar1, ur), € (Ara))

extra terms from forcing

That is to say, when the discrete forces are orthogonal to the group action in the sense that

(F7 (s At ur), € (ar)) + (ff (A, Qret1s uk), E@(Qrgr)) = 0, (2.16)

then we have

(Ja(ar; rr1), &) — (Ja(Qe-1,aqx),€) =0 (2.17)

ie., Jg = (Fr,)*J4, the discrete momentum map is preserved by the forced discrete Lagrangian map.
This is known as the discrete forced Noether’s theorem [6].

Although external forcing generally breaks symplecticity and momentum conservation, the resulting
integrator can still be very effective when the system is predominantly governed by its underlying physical
laws. This is illustrated, for instance, by a recent work on modeling aerial maneuvers with forced
variational integrators [I], which achieves accurate and stable long-term predictions despite the absence
of exact conservation properties.

LJ:T*Q — g* is the continuous momentum map given by (J(aq), &) = (aq,€g(q)) where £g(q) = % exp(h€) - d|p=0
is the infinitesimal generator.



3 Lie Group Forced Variational Integrator Network

Having established the forced discrete Euler-Lagrange equations , we could derive forced varia-
tional integrators, either from the forced discrete Lagrangian map Fr,, or the forced discrete Hamiltonian
map Fr, = F/¥Lg0 Fp, o (F/*L;)~', given an appropriate choice of the discrete Lagrangian Lq and
discrete controlled forces fj:. Applied to the parameterized Lagrangian Ly and with a neural network
used to approximate the discrete forces, this allows us to construct a feed-forward architecture similar
to VINs and is referred to as forced variational integrator networks (FVINs) [5].

In this project, we focus on deriving a forced variational integrator network for modeling rigid-body
dynamics in control applications, where the underlying configuration space is a Lie group. Since velocity
measurements are often available, it is more practical to consider a forced Velocity-Verlet integrator
derived from the discrete Hamiltonian map Fp,. While a Stormer-Verlet formulation could also be
derived from the discrete Lagrangian map Fy,, (which is advantageous when velocities are unobserved,
such as in settings with raw-image observations), this lies outside the scope of our project.

For simplicity, we start by treating translational and rotational updates separately and assume that
the system evolves with a uniform time step i > 0.

3.1 Translational Updates

To model the translation in R3, we consider the separable Newtonian system.
1
Lo(x,%) = §>'<TM9>'< — Up(x) (3.1)

We choose the following symmetric quadrature approximation

h X —X X —X
La(xXp, Xp41) = 5 (Le <Xk, kﬂhk> + Ly <Xk+17 k+1hk>) (3.2)

By direct computation, we have

h OL X - X 10L X - X 10L X - X
DL ) = ot (3, BT ) - 2008 (o, Tebo) 0 (o, Moo

h X —x
= V) - My <k+1hk>

10L Xp4+1 — X h oL Xp4+1 — X 10L Xgp4+1 — X
Palasn o) = i (5 ) GO (s M ) S50 (s, M)
Xp+1 — X h

Using the calculations in (3.3)), we can compute the momenta

B h X — X _
Pi = —DlLd(Xk7Xk+1) — fd (Xk’Xk+1,uk) = §VUO(XI€> + My <k+1hk) - fd

X — X h
Pit1 = DoLa(Xk, Xpt1) + fif (Xpe, X1, ug) = My (thk) - §VU9(xk+1) + £

based on the forced discrete Legendre transform (2.6)), which implies the following update rule

_ h?_ 1
Xk+1 = Xk + hMG 1pk — ?MG 1VU0(Xk) + hMg lfd

hVUO(Xk) + VUg(Xp41)
2

(3.5)

Pk+1 = Pk — +fi+fy

Recall that p = Myx for (3.1)), if we choose a symmetric representation of the discrete forces

Z =1y :gFe(Xkauk) (3.6)



then we will obtain the forced Velocity-Verlet integrator

. h?_
Xp41 = X + hxy, + ?Me 1<F9(Xk, Uk) — VUQ(Xk))
VU@(Xk) + VUe(Xk+1)>

Xpa1 = Xp + hM;l (Fe(xk, uy) — D)

similar to [5].

3.2 Rotational Updates

For the rotational update, we consider the parameterized Lagrangian Ly : T(SO(3)) — R on the
rotation group SO(3) similar to [3]

Lo(R,R) = %WTJW —Uyp(R) (3.8)

where w € R? 2 50(3) is the angular velocity such that R = R[w]x € Tr(SO(3)). To obtain a discretiza-
tion similar to , we need to approximate w from (R, Rg+1). We have Ry1 = Ry exp(hfwi]x) and
notice that exp(hlwi]x) ~ I+ hlwi]x, hence [wi]x ~ + (R} Riq1—1I). However, R Ry41 —1 is not skew-
symmetric, and therefore direct use of wy, &~ %(RkTRkH —1T)Vv does not make sense. Alternatively, we can
use the identity 2w Jw = —tr([w]. (2J — tr(J)I)[w]]), which gives the following discrete Lagrangian

1 = h
La(Ro, Ry1) = = - tr([Ry Rigr = Mo [Ry Ryr = 17) = 5 (Up(Ro) + Up(Ry11))

1 -
= Etr([RkTRk-i-l —1]Js)

. (3.9)
- E(UG(RIC) + Up(Ri41))

used by Duruisseaux et al. [3], where Jg = Jy — %tr(.] 9)I. For more details, see Appendix
Motivated by [J], we can lift the Lagrangian (3.8) on TSO(3) to T'S® by the surjective and locally
diffeomorphic Lie group homomorphism ® : $* — SO(3)

O(q) = (27 — DI+ 2q,q, + 2¢5[au]x (3.10)
where q = (gs,q,) € S® and S® = {q € H|||q| = 1} is the set of unit quaternionsﬂ Taking the time
derivative of the unit norm condition ||q|| = q*q = 1 yields q*q + (q*q)* = 0, which implies that q*q is

a pure quaternion (i.e., q*q € H, = {q € H|gs = 0}). Therefore, q = (q*) !¢ = g for some £ € H,,.
In Appendix B} we will verify that the tangent lift of the map ® : S® — SO(3) acts as

. Ty®
(9,q) = (q,98) — (2(q), 2®(q)[¢] ) (3.11)

and hence we may consider the lifted Lagrangian Lo =®"Ly: T(S%) —R
Lo(q, a) = 267 Jo€ — Us (©). (3.12)

To approximate £ = q*q from (qg, qx+1), we can use the mid-point rule

> —

- qi + di+1 - qr+1 — 9k 1, . . §
4a < 2 . ) < Hh ) = ﬁ(%%ﬂ — Qi 19) = ~Im(qpgr+1) (3.13)

similar to [9], which results in the following discrete Lagrangian

h 1 N 1 N
La(dk, Qrs1) = B (Le (qk7 hIm(qqu+1)> + Ly <q1c+17 hIm(Qka+1)>)
(3.14)

2 . N h
= Elm(quk+1)TJ0Im(quk+l) — §(U0(Qk) +Us(ar+1))-

2The computations that follow are adapted primarily from [9], with minor modifications to fit our notation and problem
setting. For more details, see [9] and [10].




Consider the variation qi(e) = qiexp(e(0,n)) for (0,7,) € H, such that dq; = %
ar(0,7%). We can write

e=0 qk (6) =

D1 La(qk, Qk+1) - 6qr = L a(qr(€), drt1)

€=

de
_ % [Us(ar)] " H(ar) "m

d * *
j I (ar(€)* arr1) " ToIm(qr(e)* qrs1) —

I\D\;“ [\3\;

[Us(ax)] " H(ar) "m

4 * d *
- EIm(qquH)TJa (5] m@@ra) -

e=0 (315)

= élm(QZQkH)TJeIm ((ak(0,7x)) " dk+1) — g[Ue(Qk)]TH(Qk)Tnk

h
4 . . h

= Elm(%H%)TJaIm (dis19k(0, 7)) — §[U9(Qk)]TH(%)T77k
4 . . h

= Elm(qkﬂ%)TJaG(quQk)Tnk - §[VU0(%)]TH((11«)TTH¢

where G(q), H(q) are linear operators such that G(q)'x = Im(q(0,x)) and H(q)"x = q(0,x) for any
x € R3. It can be verified that

G(a) = qsll - [qu]x

H(q) = (*QUa qs]I - [qv}x)

Notice that (D1La(qk, dr+1),0qr) = (D1La(dk, dr+1); TeLq, (0,m%)) = (Te L, D1La(dk, dr+1), (0, 7))
by the definition of cotangent lifts. Therefore, we can write

(3.16)

T¢ L, D1La(qr, ar+1) = 7 G(dgp19k)JeIm(qy, qr) — EH(Qk)VUG(Qk) (3.17)

h

in the left-trivialized coordinate system. Similarly, we could obtain

ﬁH(Qk+1)VU6(Qk+1)~ (3.18)

4 * *
+G(apar+1)JoIm(apar+1) — 5

T Lgy DaLa(qr, dpq1) = N

Given left-trivialized discrete forces fd TS® xU — (s3)*, we can compute the left-trivialized
momenta 7, Tpo1 € (53)* by the forced discrete Legendre transform (2.6) from (3.17)) and -

= —T¢ Lq, D1 La(adk, dit1) — [
4 * * h —
= —EG(%H%)JaIm(QkH%) + §H(Qk)VU9(Qk) Sy (319)
3.19
oyt = T3 Loy, DoLa(qr, A1) + £

4, . h
= EG(Qka+1)J91m(quk+1) - §H(Qk+1)VUe(Qk+1) +

which implicitly defines the update rule (qg, 7g) — (Qr+1, Tht1)-
Furthermore, it is also necessary to establish the relationship between the left-trivialized momentum
7 € (5%)* and the trivialized velocity ¢ € R® = 3. In Appendix [C] we will verify that m = 4J4&.

3.3 Full Algorithm

To avoid ambiguity, we use x € R? to denote positions and q € S® to denote the unit quaternion
representation of rotations, resulting in the following combined Lagrangian Ly : T(R? x S3) — R

. ) 1. .
Lo(x,%,q9,9) = §XTM0X +267 3¢ — Up(x,q) (3.20)

where ¢ = Im(q*q) and choose the discrete Lagrangian Lg by combining the symmetric quadrature

approximations in and ((3.14] -



Using f3* € T*R® and f:lli € (5)* to denote the (left-trivialized) discrete forces, we have the
following combined update rules

Xpt1 = Xp, + hMy 'pr — h;M;leUe(Xk, ar) + kM 5 (3.21)
Dlst = Ph thUQ(XIka) + Zer(XkH,QkH) b (3.22)

T = *%G(q2+1(1k)-]91m(qz+lqk) + gH(Qk)VqUé(Xk»Qk) - fd (3.23)
Thp1 = %G(QZ%H)J(;IHI(QZ%H) - gH(Qk+1)qu9(Xk'+la Q1) + f3F (3.24)

from and 7 where p;, € R and mj, € (5%)* = R? are the corresponding momenta. Notice that
when f7* = f7~ =0, this is equivalent to VINs on the unit quaternion group without forces (see [8, 9]).

Let & € 53 = R? such that qrr1 = qrexp(&x). We could apply a root-finding algorithm (e.g.,
Newton’s method) to solve & for given (qg, ) and obtain (qg41, 7k4+1) from the definition of &
and , similar to the approach in [3]. More specifically, we are solving equations of the form

G(exp(—&k))Jolm(exp(—Ex)) = C (3.25)

where the constant C' depends on the input (xg, Pk, Ak, Tk, Ux) and the model parameters 6. For sim-
plicity, we compute the Jacobian for the LHS of using automatic differentiation, although it could
potentially be further optimized by deriving the corresponding analytical expressions or applying the
implicit function theorem (i.e., implicit differentiation).

Because the covering map ® : S® — SO(3) is two-to-one (®(q) = ®(—q)), the physical rotation
must be independent of the quaternion sign. To prevent the learned LieFVIN model from producing
inconsistent predictions for q and —q, we enforce sign invariance on all black-box components as follows:

Jo(a) = 5 (Jo(a) + Jo(—q)),
UQ(Xﬂ q) = %(U9(X7 q) + UQ(X, _q))v
Fei(x, q,u) = %(Fai(xq, u) + Fei(x, —q, u))

Here, Jg(q) is the learned (potentially configuration-dependent) inertia matrix and ng are the neural
networks approximating the discrete forces fgi.
Lastly, given input data (x,R,%,R) € TSE(3), we can convert to

(x,q,p,7) = (x,q, Mgx,2J9(RTR)Y) € T*(R? x $%) (3.26)

where g = ®~}(R) € 93, since p = Myx, m = 4Jy¢ and & = %(RTR)V. Furthermore, the discrete forces
are related by f;”i = % f(?i This conversion is invertible, hence we can always replace the original
LieFVIN on T'SE(3) [3] with the algorithm on the quaternion representation T*(R? x S3).

4 Experiments

We evaluate the algorithm described in Section (which we refer to as S3FVIN) on a planar
pendulum, where we only need to model the rotation. Our implementation and experiment settings
follow the original LieFVIN code [3], but the LieFVIN on SO(3) is replaced with our S3-based approachﬁ

We have implemented the following three variants of S3FVIN:

(1) Enforcing sign-invariance Jo(q) = Jo(—q); Us(q) = Us(—q), and Fj (q,u) = Fif (—q,u);
(2) Using a fixed inertia matrix Jy (instead of a configuration-dependent one in the original setting);

(3) Plain (imposing no restrictions).

3The factor % accounts for the double effect of the quaternion in the rotation action [10], see Appendix
4The PyTorch implementation is available at https://github.com/hanyang—hu/S3FVIN.


https://github.com/hanyang-hu/S3FVIN

We observe that both and successfully recover the ground-truth inertia matrix Jy and the
control gain g(q) (s.t. f§ = g(q)u and f§~ = 0). As expected from the cotangent lift of ® : S® —
SO(3), the learned g(q) is twice the value reported in [3]. In contrast, fails to learn these quantities
accurately, which leads to noticeable energy drift.

Upon closer inspection, shows superior energy conservation, as expected from its use of a fixed
inertia matrix Jg. On the other hand, allowing a configuration-dependent Jy(q) increases model expres-
siveness but may slightly compromise long-term energy stability. Therefore, the choice should be made
based on the specific problem requirements.

We also observe in Fig. [2] that the sign-invariant S3FVIN converges markedly faster and more
stably than other variants of S3FVIN and the original SO3FVIN, which operates on 3 x 3 rotation
matrices. This improvement stems from the fact that unit quaternions provide a compact 4-dimensional
representation of 3D rotations, avoiding the redundancies in the 9-dimensional matrix form. To verify
that the advantage is purely representational, we implemented an SO3FVIN variant in which all black-
box components (Jg, Uy, and Fei) operate on a unit quaternion q € ®~1(R) chosen as a preimage of R
under the Lie group homomorphism ® : §% — SO(3)E| This single modification removes representational
redundancy and achieves convergence nearly identical to S3FVIN, while retaining the faster per-iteration
speed of SO3FVIN (due to the analytical Jacobian used in Newton’s iteration). Therefore, for SO(3)-
based implementations seeking optimal training behavior, internally using the conversion R +— q is a
recommended practice.

5 Conclusion

In this project, we explored S3FVIN, a Lie group forced variational integrator network based on unit
quaternions for learning controlled rigid-body dynamics. Our experiments suggest two potentially useful
takeaways: (1) explicitly enforcing sign invariance is a simple yet essential inductive bias for obtaining
physically plausible results for SSFVIN; and (2) working directly with unit quaternions generally leads
to faster and more stable training than using 3 x 3 rotation matrices, largely due to the more compact
representation. In practice, however, we still recommend using the original LieFVIN on SE(3), coupled
with an internal conversion from rotation matrices to quaternions.

5We backpropagate through the differentiable rotation-to-quaternion transformation provided by the kornia package.
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Figure 1: Visualization of the learned inertia matrix Jy, control gain ¢g(q), and long-term energy behavior
without control input. Enforcing either sign invariance or a configuration-independent inertia matrix is
essential for obtaining a well-behaved model of the planar pendulum dynamics.
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Figure 2: Loss curves for different variants of S3FVIN and SO3FVIN. The sign-invariant SSFVIN
converges fastest and most stably. SO3FVIN can achieve comparable performance by parameterizing
each black-box component using the transformation R — q, but exhibits less stable training. The latter
benefits from less wall-clock time due to the analytical Jacobian used in Newton’s method.
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A Discrete Lagrangian on SO(3)

We state the well-known Lagrange’s formula and the fact that 3 x 3 skew-symmetric matrices can be
used to represent cross products as matrix multiplications. They can be verified by direct computations.

Lemma A.1l. (Lagrange’s formula) Let u,v,w € R? we have (ux v) x w = (u-w)v — (v - w)u.
Lemma A.2. Let v,w € R?, we have [v]xw =v x w.
Corollary A.3. Let x € R?, we have [x]% = xx — ||x|°L.

X

Proof. For any v € R, we have

[X]2v =x x (x X V)

=—(xXVv)xx

= (v -x)x—(x-x)v (A1)
= (xx — |x|*Dv
which concludes the proof. [
Claim. Let w € R? and J be a 3 x 3 symmetric matrix, we have
2w ' Iw = —tr([w]x (2T — tr(I)D)[w]] ). (A.2)

Proof. We have

w ' Jw = tr(Jww ")
= tr(J([W]X + [[w]°D) (A.3)
= tr([w]x J[w]x) + [w]*tx(J)

and
tr([w]x (23 — tr(ND[w]x) = 2tr([w]x I[w]) — tr([w]3)tr(J)
= 2tr([w] J[w]x) — tr(ww ' — ||w]|?D)tr(J) (A.4)
= 2tr([w]x J[W]x) + 2|l w*tx(J)
since tr(||w||?I) = 3||w||?. As [w]x = —[w]) by definition, this concludes the proof. O

Assuming that R;_HRkH =1, we have

tr([Ry Ris1 — JJo[Ry Riyr — 7)) = tr([R) Ry — I[R) Rypy — 1) " Tp)

tr((R{ R R Ry — Ry Ry — R Ry + 1))
tr([I — R} Ryy1]dg) + tr([I — R, Ri]JTp)
= —2tr([R} Rys1 — 1 Jp)

T
T

since Jp = Jg — %tr(J )l is symmetric. This justifies the discrete Lagrangian in equation 1)
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B Tangent Lift of ®: 5% — SO(3)

Tt is well-known that ®(q)x = gqxq* for any x € R?’ﬂ Therefore, for any fixed x € R?, we have

d

%(I)(q)x axq”)

= =
= qxq” + qxq"

= qéxq” + qx(—¢q”)
= q(§x — x§)q"

= ®(q)[2(¢ x x)]

= [2®(q)[¢]x]x

since q = g€ for £ € H,, and £ = —£. Consequently, the tangent lift of ® is given by

(@,4) = (@, a) =5 (@(q), 26(q)[¢] ).

Remark. With a slight abuse of notations, we can compute

Ex = (&Gi+ &+ Suk)(wii + 25§ + xk)

= — (&G + §oy + Gpar) + (ar — Spry)i+ (§pas — Giwn)j + (Gxj — i)k

=—-¢ - x+EXX
and similarly x¢ = —x - £ + x x £. Therefore, we have
£x — xE = 2(E x x)
which is used in .

C Left-Trivialized Momenta and Velocities

Taking any tangent variation d¢(t) € 7,53, we have

oLy o\
aq ") T de

d
p— 27
de

-EO (q7 Cl + E(Sq)
e=0

Im(q* (4 + €6d)) ' JoIm(q*(q + €5¢))
e=0

= 4Tm(q*q) " JoTm(q"6q)

Notice that for any n € §% = R3, we have

Q

I
R N N
| &
o
o3
h
Q2
o
o3
~
Q2
3
\/

which implies that 7w = 4Jp&.

(B.3)

(B.4)

6Here we slightly abuse notation by identifying x € R? with the pure quaternion (0,x) € Hp; the product qxq* is then

interpreted as quaternion multiplication, which then yields a pure quaternion corresponding to a vector in R3.
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