
An Application of Geometric Numerical Integration:
Forced Variational Integrator Networks on S3

MATH 273A Project

Hu Hanyang

2025-12-09



1 Introduction

The success of deep learning methods–particularly their flexibility, expressiveness, and remarkable
ability to generalize from a finite dataset–may appear counterintuitive at first, as such models are often
highly overparameterized yet still avoid overfitting. This can be attributed to the appropriate inductive
biases embedded within the design of neural network architecture, which, according to the no-free-lunch
theorem [11], are essential for achieving good generalization performance in specific problem domains.
When applying neural networks to modeling physical systems, particularly Hamiltonian systems, it is
also desirable to encode prior knowledge about the underlying physical laws into the model design.

Specifically, consider a Hamiltonian system

q̇ =
∂H
∂p

,

ṗ = −∂H
∂q

,

(1.1)

where q and p denote the coordinates and momenta, respectively, and H(p,q) is the Hamiltonian
representing the total energy of the system. Suppose we are only given trajectories {(qt,pt)}Nt=1 as data
samples, how can we model the dynamics by a neural network model while preserving the conservation
laws of the system? Moreover, is it possible to extend the modeling framework to incorporate energy
dissipation and external forcing, which are important for applications such as robotics control?

One straightforward strategy for incorporating physical priors into neural networks is through the
loss function, as exemplified by physics-informed neural networks (PINNs) [7]. In this framework, the
network is trained to minimize the residuals of the governing PDEs, along with the initial and boundary
conditions, thereby ensuring that the learned function approximately satisfies the physical constraints.
For Hamiltonian systems, a specialized approach known as the Hamiltonian Neural Network (HNN) [4]
has been proposed, which learns a parameterized Hamiltonian Hθ to minimize the following objective:

LHNN =

∥∥∥∥∂Hθ

∂p
− q̇

∥∥∥∥+ ∥∥∥∥∂Hθ

∂q
+ ṗ

∥∥∥∥ (1.2)

where the training targets q̇ and ṗ may be obtained from analytic time derivatives or finite-difference
approximations of the observed trajectories. After training, the model predicts the dynamics by integrat-
ing equation (1.1) with a numerical integrator (e.g., a fourth-order Runge–Kutta method). A potential
limitation of loss-based approaches is that they typically require training data that sufficiently covers
the configuration space to achieve good generalization.

An alternative approach is to focus on inference rather than the loss function. By interpreting a deep
residual network as an Euler discretization of an underlying ODE system [2], one can replace the standard
Euler step with a geometric numerical integrator, thereby preserving desired invariants such as energy
or momentum. This idea is exemplified by the Variational Integrator Network (VIN) [8]. In contrast
to HNNs [4], VINs explicitly enforce conservation through their inference scheme, which accounts for
their reported advantages over HNNs in low- and moderate-data regimes [8]. For instance, consider a
parameterized Lagrangian

Lθ(q, q̇) =
1

2
q̇⊤Mθq̇− Uθ(q) (1.3)

and the Velocity-Verlet method

qk+1 = qk + hq̇k − h2

2
M−1

θ ∇Uθ(qk)

q̇k+1 = q̇k − hM−1
θ

(
∇Uθ(qk) +∇Uθ(qk+1)

2

) (1.4)

can then serve as the feed-forward architecture of the VIN. The parameters θ can be trained by matching
model roll-outs to observed trajectories, analogous to training a black-box dynamics model.

The VIN framework comes with the following advantages:

1



1. VINs inherit the desirable properties of variational integrators, including symplecticity, momentum
conservation, and approximate energy conservation. Moreover, the order of accuracy of a variational
integrator is determined by how well the discrete Lagrangian approximates the exact discrete
Lagrangian, as established by variational error analysis [6].

2. VINs enjoy the flexibility of using a black-box network Uθ for potential energy modeling. Meantime,
the notions of kinetic and potential energy increase interpretability.

In this project, our focus is on forced variational integrators, which enable data-efficient and physics-
constrained dynamics modeling in control applications.

2 Discrete Variational Mechanics with Forces

2.1 Forced Discrete Systems

In this section, we overview the discrete variational principles underlying forced variational integrators
following the presentation in [6]. We start with the continuous setting: consider a configuration manifold
Q with a Lagrangian L : TQ → R and a control manifold U with an external force fL : TQ×U → T ∗Q,
the Hamilton’s principle is modified to the Lagrange-d’Alembert principle

δ

∫ T

0

L(q(t), q̇(t)) dt︸ ︷︷ ︸
action integral

+

∫ T

0

fL(q(t), q̇(t),u(t)) · δq(t) dt︸ ︷︷ ︸
virtual work

= 0 (2.1)

subject to δq(0) = δq(T ) = 0, where q : [0, T ] → Q is the true path and u : [0, T ] → U is the control.
In the discrete setting, we consider the discrete Lagrangian Ld : Q×Q → R and the discrete controlled

forces f±
d : Q×Q× U → T ∗Q which approximates the virtual work by∫ tk+1

tk

fL(q(t), q̇(t),u(t)) · δq(t)dt ≈ f−
d (qk,qk+1,uk) · δqk + f+

d (qk,qk+1,uk) · δqk+1 (2.2)

then the true discrete trajectory {qk}Nk=0 w.r.t. the control sequence {uk}N−1
k=0 satisfies the discrete

Lagrange-d’Alembert principle

δ

N−1∑
k=0

Ld(qk,qk+1) +

N−1∑
k=0

[f−
d (qk,qk+1,uk) · δqk + f+

d (qk,qk+1,uk) · δqk+1] = 0 (2.3)

subject to δq0 = δqN = 0. Using this constraint and discrete integration by parts, we have

δ

N−1∑
k=0

Ld(qk,qk+1) +

N−1∑
k=0

[f−
d (qk,qk+1,uk) · δqk + f+

d (qk,qk+1,uk) · δqk+1]

=

N−1∑
k=0

[D1Ld(qk,qk+1) · δqk +D2Ld(qk,qk+1) · δqk+1]

+

N−1∑
k=0

[f−
d (qk,qk+1,uk) · δqk + f+

d (qk,qk+1,uk) · δqk+1]

=

N−1∑
k=0

[D1Ld(qk,qk+1) +D2Ld(qk−1,qk) + f−
d (qk,qk+1,uk) + f+

d (qk−1,qk,uk−1)] · δqk

(2.4)

which implies the forced discrete Euler-Lagrange equations

D1Ld(qk,qk+1) +D2Ld(qk−1,qk) + f−
d (qk,qk+1,uk) + f+

d (qk−1,qk,uk−1) = 0. (2.5)

2



Fix the control sequence {uk}N−1
k=0 , we can define the forced discrete Legendre transform Ff±Ld :

Q×Q → T ∗Q to be

Ff+Ld : (qk,qk+1) → (qk+1,pk+1) = (qk+1, D2Ld(qk,qk+1) + f+
d (qk,qk+1,uk))

Ff−Ld : (qk,qk+1) → (qk,pk) = (qk,−D1Ld(qk,qk+1)− f−
d (qk,qk+1,uk))

(2.6)

so that the momenta {pk}Nk=0 are well-defined by the forced discrete Euler-Lagrange equations (2.5) and
the connection between the discrete and continuous systems in (2.10) makes sense. Moreover, we can
define the forced discrete Euler-Lagrange map and Hamiltonian map by

FLd
= (Ff−Ld)

−1 ◦ (Ff+Ld) : (qk−1,qk) 7→ (qk,qk+1)

F̃Ld
= Ff±Ld ◦ FLd

◦ (Ff±Ld)
−1 : (qk,pk) 7→ (qk+1,pk+1)

(2.7)

respectively.
Finally, we may establish a correspondence between the continuous and discrete mechanics with

forces, so that the variational error analysis for the unforced case may still apply. We define the exact
discrete Lagrangian and exact discrete forces to be

LE
d (q0,q1, h) =

∫ h

0

L(q0,1(t), q̇0,1(t))dt

fE+
d (q0,q1, h) =

∫ h

0

fL(q0,1(t), q̇0,1(t),u(t)) ·
∂q0,1(t)

∂q1
dt

fE−
d (q0,q1, h) =

∫ h

0

fL(q0,1(t), q̇0,1(t),u(t)) ·
∂q0,1(t)

∂q0
dt

(2.8)

where q0,1 : [0, h] → Q is the solution of the Lagrange-d’Alembert principle (2.1) with the control input
u : [0, h] → U and boundary conditions q0,1(0) = q0 and q0,1(1) = q1. Notice that with the exact
discrete forces fE±

d , the approximation in (2.2) becomes exact∫ h

0

fL(q0,1(t), q̇0,1(t),u(t)) · δq0,1(t)dt =

∫ h

0

fL(q0,1(t), q̇0,1(t),u(t)) ·
(
∂q0,1(t)

∂q0
δq0 +

∂q0,1(t)

∂q1
δq1

)
dt

=

∫ h

0

fL(q0,1(t), q̇0,1(t),u(t)) ·
∂q0,1(t)

∂q0
dt · δq0

+

∫ h

0

fL(q0,1(t), q̇0,1(t),u(t)) ·
∂q0,1(t)

∂q1
dt · q1

= fE−
d (q0,q1, h) · δq0 + fE+

d (q0,q1, h) · δq1

(2.9)

We can compute the forced discrete Legendre transform using integration by parts

Ff−LE
d (q0,q1, h) = −D1L

E
d (q0,q1, h)− fE−

d (q0,q1, h)

= −
∫ h

0

[
∂L

∂q
· ∂q0,1

∂q0
+

∂L

∂q̇
· ∂q̇0,1

∂q0

]
dt−

∫ h

0

fL(q0,1(t), q̇0,1(t),u(t)) ·
∂q0,1(t)

∂q0
dt

= −
∫ h

0

[
∂L

∂q
− d

dt

∂L

∂q̇
− fL(q0,1(t), q̇0,1(t),u(t))

]
︸ ︷︷ ︸

= 0 by the forced Euler-Lagrange equation

·∂q0,1

∂q0
dt−

[
∂L

∂q̇
· ∂q0,1

∂q0

]h
0

=
∂L

∂q̇
(q0,1(0), q̇0,1(0))

= FL(q0,1(0), q̇0,1(0))

(2.10)

where FL : TQ → T ∗Q is the standard Legendre transform, and Ff+LE
d (q0,q1, h) = FL(q0,1(1), q̇0,1(1))

following similar calculations. Notice that we have used the forced Euler-Lagrange equation, which is the
continuous version of (2.5) and can be derived from the Lagrange-d’Alembert principle (2.1). Since the
forced Hamiltonian and Lagrangian vector fields are also related by the standard Legendre transform,
this shows that the forced exact discrete system is still equivalent to the forced continuous system.

3



2.2 Preservation of Symplecticity and Momentum

In the forced setting, using the forced discrete Legendre transform (2.6), we can write

0 = d2Ld(qk,qk+1)

= d

(
∂Ld

∂qi
k

dqi
k +

∂Ld

∂qj
k+1

dqj
k+1

)
= d

(
(−pi

k − f−i
d (qk,qk+1,uk))dq

i
k + (pj

k+1 − f+j
d (qk,qk+1,uk))dq

j
k+1

)
= dqi

k ∧ dpi
k − dqj

k+1 ∧ dpj
k+1 − [df−i

d (qk,qk+1,uk) ∧ dqi
k + df+j

d (qk,qk+1,uk)) ∧ dqj
k+1]︸ ︷︷ ︸

extra terms from forcing

(2.11)

which implies that dqi
k ∧ dpi

k ̸= dqj
k+1 ∧ dpj

k+1 in general due to the presence of forcing, i.e. the forced

discrete Hamiltonian map F̃Ld
: (qk,pk) 7→ (qk+1,pk+1) is not necessarily symplectic.

Furthermore, suppose we have a diagonal action ΦQ×Q : G×Q×Q → Q×Q of a group G on Q×Q
and the discrete Lagrangian is G-invariant such that

Ld(g · qk, g · qk+1) = Ld(qk,qk+1), ∀g ∈ G (2.12)

then the discrete momentum map Jd : Q×Q → g∗ defined by

⟨Jd(qk,qk+1), ξ⟩ := ⟨J(Ff±Ld(qk,qk+1)), ξ⟩ (2.13)

can be preserved by the forced discrete Lagrangian map FLd
under certain conditions.1

Specifically, let ξ ∈ g∗, we have Ld(exp(hξ) ·qk, exp(hξ) ·qk+1) = Ld(qk,qk+1). Taking the derivative
over h and evaluate at h = 0, we have the following identity

⟨D1Ld(qk,qk+1), ξQ(qk)⟩+ ⟨D2Ld(qk,qk+1), ξQ(qk+1)⟩ = 0. (2.14)

Pair the LHS of the forced discrete Euler–Lagrange equation (2.5) with ξQ(qk) and use (2.14), we have

0 = ⟨D1Ld(qk,qk+1) +D2Ld(qk−1,qk) + f−
d (qk,qk+1,uk) + f+

d (qk−1,qk,uk−1), ξQ(qk)⟩
= −⟨D2Ld(qk,qk+1), ξQ(qk+1)⟩+ ⟨D2Ld(qk−1,qk), ξQ(qk)⟩

+ ⟨f−
d (qk,qk+1,uk), ξQ(qk)⟩+ ⟨f+

d (qk−1,qk,uk−1), ξQ(qk)⟩
= −⟨D2Ld(qk,qk+1) + f+

d (qk,qk+1,uk), ξQ(qk+1)⟩
+ ⟨D2Ld(qk−1,qk) + f+

d (qk−1,qk,uk−1), ξQ(qk)⟩
+ ⟨f−

d (qk,qk+1,uk), ξQ(qk)⟩+ ⟨f+
d (qk,qk+1,uk), ξQ(qk+1)⟩

= −⟨Ff+Ld(qk,qk+1), ξQ(qk+1)⟩+ ⟨Ff+Ld(qk−1,qk), ξQ(qk)⟩
+ ⟨f−

d (qk,qk+1,uk), ξQ(qk)⟩+ ⟨f+
d (qk,qk+1,uk), ξQ(qk+1)⟩︸ ︷︷ ︸

extra terms from forcing

(2.15)

That is to say, when the discrete forces are orthogonal to the group action in the sense that

⟨f−
d (qk,qk+1,uk), ξQ(qk)⟩+ ⟨f+

d (qk,qk+1,uk), ξQ(qk+1)⟩ = 0, (2.16)

then we have

⟨Jd(qk,qk+1), ξ⟩ − ⟨Jd(qk−1,qk), ξ⟩ = 0 (2.17)

i.e., Jd = (FLd
)∗Jd, the discrete momentum map is preserved by the forced discrete Lagrangian map.

This is known as the discrete forced Noether’s theorem [6].
Although external forcing generally breaks symplecticity and momentum conservation, the resulting

integrator can still be very effective when the system is predominantly governed by its underlying physical
laws. This is illustrated, for instance, by a recent work on modeling aerial maneuvers with forced
variational integrators [1], which achieves accurate and stable long-term predictions despite the absence
of exact conservation properties.

1J : T ∗Q → g∗ is the continuous momentum map given by ⟨J(αq), ξ⟩ = ⟨αq, ξQ(q)⟩ where ξQ(q) := d
dh

exp(hξ) · q|h=0

is the infinitesimal generator.

4



3 Lie Group Forced Variational Integrator Network

Having established the forced discrete Euler-Lagrange equations (2.5), we could derive forced varia-
tional integrators, either from the forced discrete Lagrangian map FLd

or the forced discrete Hamiltonian
map F̃Ld

= Ff±Ld ◦ FLd
◦ (Ff±Ld)

−1, given an appropriate choice of the discrete Lagrangian Ld and
discrete controlled forces f±

d . Applied to the parameterized Lagrangian Lθ and with a neural network
used to approximate the discrete forces, this allows us to construct a feed-forward architecture similar
to VINs and is referred to as forced variational integrator networks (FVINs) [5].

In this project, we focus on deriving a forced variational integrator network for modeling rigid-body
dynamics in control applications, where the underlying configuration space is a Lie group. Since velocity
measurements are often available, it is more practical to consider a forced Velocity-Verlet integrator
derived from the discrete Hamiltonian map F̃Ld

. While a Störmer–Verlet formulation could also be
derived from the discrete Lagrangian map FLd

(which is advantageous when velocities are unobserved,
such as in settings with raw-image observations), this lies outside the scope of our project.

For simplicity, we start by treating translational and rotational updates separately and assume that
the system evolves with a uniform time step h > 0.

3.1 Translational Updates

To model the translation in R3, we consider the separable Newtonian system.

Lθ(x, ẋ) =
1

2
ẋ⊤Mθẋ− Uθ(x) (3.1)

We choose the following symmetric quadrature approximation

Ld(xk,xk+1) =
h

2

(
Lθ

(
xk,

xk+1 − xk

h

)
+ Lθ

(
xk+1,

xk+1 − xk

h

))
(3.2)

By direct computation, we have

D1Ld(xk,xk+1) =
h

2

∂Lθ

∂x

(
xk,

xk+1 − xk

h

)
− 1

2

∂Lθ

∂ẋ

(
xk,

xk+1 − xk

h

)
− 1

2

∂Lθ

∂ẋ

(
xk+1,

xk+1 − xk

h

)
= −h

2
∇Uθ(xk)−Mθ

(
xk+1 − xk

h

)
D2Ld(xk,xk+1) =

1

2

∂Lθ

∂ẋ

(
xk,

xk+1 − xk

h

)
+

h

2

∂Lθ

∂x

(
xk+1,

xk+1 − xk

h

)
+

1

2

∂Lθ

∂ẋ

(
xk+1,

xk+1 − xk

h

)
= Mθ

(
xk+1 − xk

h

)
− h

2
∇Uθ(xk+1)

(3.3)

Using the calculations in (3.3), we can compute the momenta

pk = −D1Ld(xk,xk+1)− f−
d (xk,xk+1,uk) =

h

2
∇Uθ(xk) +Mθ

(
xk+1 − xk

h

)
− f−

d

pk+1 = D2Ld(xk,xk+1) + f+
d (xk,xk+1,uk) = Mθ

(
xk+1 − xk

h

)
− h

2
∇Uθ(xk+1) + f+

d

(3.4)

based on the forced discrete Legendre transform (2.6), which implies the following update rule

xk+1 = xk + hM−1
θ pk − h2

2
M−1

θ ∇Uθ(xk) + hM−1
θ f−

d

pk+1 = pk − h
∇Uθ(xk) +∇Uθ(xk+1)

2
+ f+

d + f−
d

(3.5)

Recall that p = Mθẋ for (3.1), if we choose a symmetric representation of the discrete forces

f+
d = f−

d =
h

2
Fθ(xk,uk) (3.6)

5



then we will obtain the forced Velocity-Verlet integrator

xk+1 = xk + hẋk +
h2

2
M−1

θ (Fθ(xk,uk)−∇Uθ(xk))

ẋk+1 = ẋk + hM−1
θ

(
Fθ(xk,uk)−

∇Uθ(xk) +∇Uθ(xk+1)

2

)
.

(3.7)

similar to [5].

3.2 Rotational Updates

For the rotational update, we consider the parameterized Lagrangian Lθ : T (SO(3)) → R on the
rotation group SO(3) similar to [3]

Lθ(R, Ṙ) =
1

2
ω⊤Jθω − Uθ(R) (3.8)

where ω ∈ R3 ∼= so(3) is the angular velocity such that Ṙ = R[ω]× ∈ TR(SO(3)). To obtain a discretiza-
tion similar to (3.2), we need to approximate ω from (Rk,Rk+1). We have Rk+1 = Rk exp(h[ωk]×) and
notice that exp(h[ωk]×) ≈ I+h[ωk]×, hence [ωk]× ≈ 1

h (R
⊤
k Rk+1− I). However, R⊤

k Rk+1− I is not skew-
symmetric, and therefore direct use of ωk ≈ 1

h (R
⊤
k Rk+1−I)∨ does not make sense. Alternatively, we can

use the identity 2w⊤Jw = −tr([w]×(2J− tr(J)I)[w]⊤×), which gives the following discrete Lagrangian

Ld(Rk,Rk+1) = − 1

2h
tr([R⊤

k Rk+1 − I]J̃θ[R
⊤
k Rk+1 − I]⊤)− h

2
(Uθ(Rk) + Uθ(Rk+1))

=
1

h
tr([R⊤

k Rk+1 − I]J̃θ)−
h

2
(Uθ(Rk) + Uθ(Rk+1))

(3.9)

used by Duruisseaux et al. [3], where J̃θ = Jθ − 1
2 tr(Jθ)I. For more details, see Appendix A.

Motivated by [9], we can lift the Lagrangian (3.8) on TSO(3) to TS3 by the surjective and locally
diffeomorphic Lie group homomorphism Φ : S3 → SO(3)

Φ(q) = (2q2s − 1)I+ 2qvq
⊤
v + 2qs[qv]× (3.10)

where q = (qs,qv) ∈ S3 and S3 = {q ∈ H | ∥q∥ = 1} is the set of unit quaternions.2 Taking the time
derivative of the unit norm condition ∥q∥ = q∗q = 1 yields q∗q̇+ (q∗q̇)∗ = 0, which implies that q∗q̇ is
a pure quaternion (i.e., q∗q̇ ∈ Hp = {q ∈ H | qs = 0}). Therefore, q̇ = (q∗)−1ξ = qξ for some ξ ∈ Hp.

In Appendix B, we will verify that the tangent lift of the map Φ : S3 → SO(3) acts as

(q, q̇) = (q,qξ)
TqΦ−−−→ (Φ(q), 2Φ(q)[ξ]×) (3.11)

and hence we may consider the lifted Lagrangian L̂θ = Φ∗Lθ : T (S3) → R

L̂θ(q, q̇) = 2ξ⊤Jθξ − Uθ(ξ). (3.12)

To approximate ξ = q∗q̇ from (qk,qk+1), we can use the mid-point rule

q∗q̇ ≈
(
qk + qk+1

2

)∗(
qk+1 − qk

h

)
=

1

2h
(q∗

kqk+1 − q∗
k+1qk) =

1

h
Im(q∗

kqk+1) (3.13)

similar to [9], which results in the following discrete Lagrangian

Ld(qk,qk+1) =
h

2

(
Lθ

(
qk,

1

h
Im(q∗

kqk+1)

)
+ Lθ

(
qk+1,

1

h
Im(q∗

kqk+1)

))
=

2

h
Im(q∗

kqk+1)
⊤JθIm(q∗

kqk+1)−
h

2
(Uθ(qk) + Uθ(qk+1)).

(3.14)

2The computations that follow are adapted primarily from [9], with minor modifications to fit our notation and problem
setting. For more details, see [9] and [10].

6



Consider the variation qk(ϵ) = qk exp(ϵ(0, ηk)) for (0, ηk) ∈ Hp such that δqk = d
dϵ

∣∣
ϵ=0

qk(ϵ) =
qk(0, ηk). We can write

D1Ld(qk,qk+1) · δqk =
d

dϵ

∣∣∣∣
ϵ=0

Ld(qk(ϵ),qk+1)

=
2

h

d

dϵ

∣∣∣∣
ϵ=0

Im(qk(ϵ)
∗qk+1)

⊤JθIm(qk(ϵ)
∗qk+1)−

h

2
[Uθ(qk)]

⊤H(qk)
⊤ηk

=
4

h
Im(q∗

kqk+1)
⊤Jθ

(
d

dϵ

∣∣∣∣
ϵ=0

Im(qk(ϵ)
∗qk+1)

)
− h

2
[Uθ(qk)]

⊤H(qk)
⊤ηk

=
4

h
Im(q∗

kqk+1)
⊤JθIm ((qk(0, ηk))

∗qk+1)−
h

2
[Uθ(qk)]

⊤H(qk)
⊤ηk

=
4

h
Im(q∗

k+1qk)
⊤JθIm

(
q∗
k+1qk(0, ηk)

)
− h

2
[Uθ(qk)]

⊤H(qk)
⊤ηk

=
4

h
Im(q∗

k+1qk)
⊤JθG(q∗

k+1qk)
⊤ηk − h

2
[∇Uθ(qk)]

⊤H(qk)
⊤ηk

(3.15)

where G(q), H(q) are linear operators such that G(q)⊤x = Im(q(0,x)) and H(q)⊤x = q(0,x) for any
x ∈ R3. It can be verified that

G(q) = qsI− [qv]×

H(q) = (−qv,qsI− [qv]×)
(3.16)

Notice that ⟨D1Ld(qk,qk+1), δqk⟩ = ⟨D1Ld(qk,qk+1), TeLqk
(0, ηk)⟩ = ⟨T ∗

eLqk
D1Ld(qk,qk+1), (0, ηk)⟩

by the definition of cotangent lifts. Therefore, we can write

T ∗
eLqk

D1Ld(qk,qk+1) =
4

h
G(q∗

k+1qk)JθIm(q∗
k+1qk)−

h

2
H(qk)∇Uθ(qk) (3.17)

in the left-trivialized coordinate system. Similarly, we could obtain

T ∗
eLqk+1

D2Ld(qk,qk+1) =
4

h
G(q∗

kqk+1)JθIm(q∗
kqk+1)−

h

2
H(qk+1)∇Uθ(qk+1). (3.18)

Given left-trivialized discrete forces f±
d : TS3 × U → (s3)∗, we can compute the left-trivialized

momenta πk,πk+1 ∈ (s3)∗ by the forced discrete Legendre transform (2.6) from (3.17) and (3.18)

πk = −T ∗
eLqk

D1Ld(qk,qk+1)− f−
d

= − 4

h
G(q∗

k+1qk)JθIm(q∗
k+1qk) +

h

2
H(qk)∇Uθ(qk)− f−

d

πk+1 = T ∗
eLqk+1

D2Ld(qk,qk+1) + f+
d

=
4

h
G(q∗

kqk+1)JθIm(q∗
kqk+1)−

h

2
H(qk+1)∇Uθ(qk+1) + f+

d

(3.19)

which implicitly defines the update rule (qk,πk) 7→ (qk+1,πk+1).
Furthermore, it is also necessary to establish the relationship between the left-trivialized momentum

π ∈ (s3)∗ and the trivialized velocity ξ ∈ R3 ∼= s3. In Appendix C, we will verify that π = 4Jθξ.

3.3 Full Algorithm

To avoid ambiguity, we use x ∈ R3 to denote positions and q ∈ S3 to denote the unit quaternion
representation of rotations, resulting in the following combined Lagrangian Lθ : T (R3 × S3) → R

Lθ(x, ẋ,q, q̇) =
1

2
ẋ⊤Mθẋ+ 2ξ⊤Jθξ − Uθ(x,q) (3.20)

where ξ = Im(q∗q̇), and choose the discrete Lagrangian Ld by combining the symmetric quadrature
approximations in (3.2) and (3.14).

7



Using fx±
d ∈ T ∗R3 and fq±

d ∈ (s3)∗ to denote the (left-trivialized) discrete forces, we have the
following combined update rules

xk+1 = xk + hM−1
θ pk − h2

2
M−1

θ ∇xUθ(xk,qk) + hM−1
θ fx−

d (3.21)

pk+1 = pk − h
∇xUθ(xk,qk) +∇xUθ(xk+1,qk+1)

2
+ fx+

d + fx−
d (3.22)

πk = − 4

h
G(q∗

k+1qk)JθIm(q∗
k+1qk) +

h

2
H(qk)∇qUθ(xk,qk)− fq−

d (3.23)

πk+1 =
4

h
G(q∗

kqk+1)JθIm(q∗
kqk+1)−

h

2
H(qk+1)∇qUθ(xk+1,qk+1) + fq+

d (3.24)

from (3.5) and (3.19), where pk ∈ R3 and πk ∈ (s3)∗ ∼= R3 are the corresponding momenta. Notice that
when fx±

d = fq±
d = 0, this is equivalent to VINs on the unit quaternion group without forces (see [8, 9]).

Let ξk ∈ s3 ∼= R3 such that qk+1 = qk exp(ξk). We could apply a root-finding algorithm (e.g.,
Newton’s method) to solve ξk for (3.23) given (qk,πk) and obtain (qk+1,πk+1) from the definition of ξk
and (3.24), similar to the approach in [3]. More specifically, we are solving equations of the form

G(exp(−ξk))JθIm(exp(−ξk)) = C (3.25)

where the constant C depends on the input (xk,pk,qk,πk,uk) and the model parameters θ. For sim-
plicity, we compute the Jacobian for the LHS of (3.25) using automatic differentiation, although it could
potentially be further optimized by deriving the corresponding analytical expressions or applying the
implicit function theorem (i.e., implicit differentiation).

Because the covering map Φ : S3 → SO(3) is two-to-one (Φ(q) = Φ(−q)), the physical rotation
must be independent of the quaternion sign. To prevent the learned LieFVIN model from producing
inconsistent predictions for q and −q, we enforce sign invariance on all black-box components as follows:

Ĵθ(q) =
1
2

(
Jθ(q) + Jθ(−q)

)
,

Ûθ(x,q) =
1
2

(
Uθ(x,q) + Uθ(x,−q)

)
,

F̂±
θ (x,q,u) = 1

2

(
F±
θ (x,q,u) + F±

θ (x,−q,u)
)
.

Here, Jθ(q) is the learned (potentially configuration-dependent) inertia matrix and F±
θ are the neural

networks approximating the discrete forces fq±
d .

Lastly, given input data (x,R, ẋ, Ṙ) ∈ TSE(3), we can convert to

(x,q,p,π) = (x,q,Mθẋ, 2Jθ(R
⊤Ṙ)∨) ∈ T ∗(R3 × S3) (3.26)

where q = Φ−1(R) ∈ S3, since p = Mθẋ, π = 4Jθξ and ξ = 1
2 (R

⊤Ṙ)∨. Furthermore, the discrete forces

are related by fR±
d = 1

2f
q±
d .3 This conversion is invertible, hence we can always replace the original

LieFVIN on TSE(3) [3] with the algorithm on the quaternion representation T ∗(R3 × S3).

4 Experiments

We evaluate the algorithm described in Section 3.3 (which we refer to as S3FVIN) on a planar
pendulum, where we only need to model the rotation. Our implementation and experiment settings
follow the original LieFVIN code [3], but the LieFVIN on SO(3) is replaced with our S3-based approach.4

We have implemented the following three variants of S3FVIN:

(1) Enforcing sign-invariance Jθ(q) = Jθ(−q); Uθ(q) = Uθ(−q), and F±
θ (q,u) = F±

θ (−q,u);

(2) Using a fixed inertia matrix Jθ (instead of a configuration-dependent one in the original setting);

(3) Plain (imposing no restrictions).

3The factor 1
2
accounts for the double effect of the quaternion in the rotation action [10], see Appendix B.

4The PyTorch implementation is available at https://github.com/hanyang-hu/S3FVIN.

8

https://github.com/hanyang-hu/S3FVIN


We observe that both (1) and (2) successfully recover the ground-truth inertia matrix Jθ and the
control gain g(q) (s.t. fq−

d = g(q)u and fq−
d = 0). As expected from the cotangent lift of Φ : S3 →

SO(3), the learned g(q) is twice the value reported in [3]. In contrast, (3) fails to learn these quantities
accurately, which leads to noticeable energy drift.

Upon closer inspection, (2) shows superior energy conservation, as expected from its use of a fixed
inertia matrix Jθ. On the other hand, allowing a configuration-dependent Jθ(q) increases model expres-
siveness but may slightly compromise long-term energy stability. Therefore, the choice should be made
based on the specific problem requirements.

We also observe in Fig. 2 that the sign-invariant S3FVIN converges markedly faster and more
stably than other variants of S3FVIN and the original SO3FVIN, which operates on 3 × 3 rotation
matrices. This improvement stems from the fact that unit quaternions provide a compact 4-dimensional
representation of 3D rotations, avoiding the redundancies in the 9-dimensional matrix form. To verify
that the advantage is purely representational, we implemented an SO3FVIN variant in which all black-
box components (Jθ, Uθ, and F±

θ ) operate on a unit quaternion q ∈ Φ−1(R) chosen as a preimage of R
under the Lie group homomorphism Φ : S3 → SO(3).5 This single modification removes representational
redundancy and achieves convergence nearly identical to S3FVIN, while retaining the faster per-iteration
speed of SO3FVIN (due to the analytical Jacobian used in Newton’s iteration). Therefore, for SO(3)-
based implementations seeking optimal training behavior, internally using the conversion R 7→ q is a
recommended practice.

5 Conclusion

In this project, we explored S3FVIN, a Lie group forced variational integrator network based on unit
quaternions for learning controlled rigid-body dynamics. Our experiments suggest two potentially useful
takeaways: (1) explicitly enforcing sign invariance is a simple yet essential inductive bias for obtaining
physically plausible results for S3FVIN; and (2) working directly with unit quaternions generally leads
to faster and more stable training than using 3 × 3 rotation matrices, largely due to the more compact
representation. In practice, however, we still recommend using the original LieFVIN on SE(3), coupled
with an internal conversion from rotation matrices to quaternions.

5We backpropagate through the differentiable rotation-to-quaternion transformation provided by the kornia package.

9



(a) Inertia matrix of (1) (b) Control gain of (1) (c) Energy conservation of (1)

(d) Inertia matrix of (2) (e) Control gain of (2) (f) Energy conservation of (2)

(g) Inertia matrix of (3) (h) Control gain of (3) (i) Energy conservation of (3)

Figure 1: Visualization of the learned inertia matrix Jθ, control gain g(q), and long-term energy behavior
without control input. Enforcing either sign invariance or a configuration-independent inertia matrix is
essential for obtaining a well-behaved model of the planar pendulum dynamics.

Figure 2: Loss curves for different variants of S3FVIN and SO3FVIN. The sign-invariant S3FVIN
converges fastest and most stably. SO3FVIN can achieve comparable performance by parameterizing
each black-box component using the transformation R 7→ q, but exhibits less stable training. The latter
benefits from less wall-clock time due to the analytical Jacobian used in Newton’s method.

10



References

[1] Scott Beck, Chuong Nguyen, Thai Duong, Nikolay Atanasov, and Quan Nguyen. High accuracy
aerial maneuvers on legged robots using variational integrator discretized trajectory optimization.
In 2025 IEEE International Conference on Robotics and Automation (ICRA), pages 10253–10260,
2025.

[2] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations, 2019.

[3] Valentin Duruisseaux, Thai Duong, Melvin Leok, and Nikolay Atanasov. Lie group forced variational
integrator networks for learning and control of robot systems, 2023.

[4] Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks, 2019.

[5] Aaron Havens and Girish Chowdhary. Forced variational integrator networks for prediction and
control of mechanical systems, 2021.

[6] J. E. Marsden and M. West. Discrete mechanics and variational integrators. Acta Numerica,
10:357–514, 2001.

[7] M Raissi, P Perdikaris, and G E Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
J. Comput. Phys., 378:686–707, February 2019.

[8] Steindor Saemundsson, Alexander Terenin, Katja Hofmann, and Marc Peter Deisenroth. Variational
integrator networks for physically structured embeddings, 2020.

[9] Xuefeng Shen and Melvin Leok. Lie group variational integrators for rigid body problems using
quaternions, 2017.

[10] Joan Solà, Jeremie Deray, and Dinesh Atchuthan. A micro lie theory for state estimation in robotics,
2021.

[11] David H Wolpert. The lack of a priori distinctions between learning algorithms. Neural Comput.,
8(7):1341–1390, October 1996.

11



A Discrete Lagrangian on SO(3)

We state the well-known Lagrange’s formula and the fact that 3× 3 skew-symmetric matrices can be
used to represent cross products as matrix multiplications. They can be verified by direct computations.

Lemma A.1. (Lagrange’s formula) Let u,v,w ∈ R3, we have (u× v)×w = (u ·w)v − (v ·w)u.

Lemma A.2. Let v,w ∈ R3, we have [v]×w = v ×w.

Corollary A.3. Let x ∈ R3, we have [x]2× = xx⊤ − ∥x∥2I.

Proof. For any v ∈ R3, we have

[x]2×v = x× (x× v)

= −(x× v)× x

= (v · x)x− (x · x)v
= (xx⊤ − ∥x∥2I)v

(A.1)

which concludes the proof.

Claim. Let w ∈ R3 and J be a 3× 3 symmetric matrix, we have

2w⊤Jw = −tr([w]×(2J− tr(J)I)[w]⊤×). (A.2)

Proof. We have

w⊤Jw = tr(Jww⊤)

= tr(J([w]2× + ∥w∥2I))
= tr([w]×J[w]×) + ∥w∥2tr(J)

(A.3)

and

tr([w]×(2J− tr(J)I)[w]×) = 2tr([w]×J[w]×)− tr([w]2×)tr(J)

= 2tr([w]×J[w]×)− tr(ww⊤ − ∥w∥2I)tr(J)
= 2tr([w]×J[w]×) + 2∥w∥2tr(J)

(A.4)

since tr(∥w∥2I) = 3∥w∥2. As [w]× = −[w]⊤× by definition, this concludes the proof.

Assuming that R⊤
k+1Rk+1 = I, we have

tr([R⊤
k Rk+1 − I]J̃θ[R

⊤
k Rk+1 − I]⊤) = tr([R⊤

k Rk+1 − I][R⊤
k Rk+1 − I]⊤J̃θ)

= tr([R⊤
k Rk+1R

⊤
k+1Rk −R⊤

k Rk+1 −R⊤
k+1Rk + I]J̃θ)

= tr([I−R⊤
k Rk+1]J̃θ) + tr([I−R⊤

k+1Rk]J̃θ)

= −2tr([R⊤
k Rk+1 − I]J̃θ)

(A.5)

since J̃θ = Jθ − 1
2 tr(Jθ)I is symmetric. This justifies the discrete Lagrangian in equation (3.9).

12



B Tangent Lift of Φ: S3 → SO(3)

It is well-known that Φ(q)x = qxq∗ for any x ∈ R3.6 Therefore, for any fixed x ∈ R3, we have

d

dt
Φ(q)x =

d

dt
(qxq∗)

= q̇xq∗ + qxq̇∗

= qξxq∗ + qx(−ξq∗)

= q(ξx− xξ)q∗

= Φ(q)[2(ξ × x)]

= [2Φ(q)[ξ]×]x

(B.1)

since q̇ = qξ for ξ ∈ Hp and ξ∗ = −ξ. Consequently, the tangent lift of Φ is given by

(q, q̇) = (q,qξ)
TqΦ−−−→ (Φ(q), 2Φ(q)[ξ]×). (B.2)

Remark. With a slight abuse of notations, we can compute

ξx = (ξii+ ξjj+ ξkk)(xii+ xjj+ xkk)

= −(ξixi + ξjxj + ξkxk) + (ξjxk − ξkxj)i+ (ξkxi − ξixk)j+ (ξixj − ξjxi)k

= −ξ · x+ ξ × x

(B.3)

and similarly xξ = −x · ξ + x× ξ. Therefore, we have

ξx− xξ = 2(ξ × x) (B.4)

which is used in (B.1).

C Left-Trivialized Momenta and Velocities

Taking any tangent variation δq̇(t) ∈ TqS
3, we have〈

∂L̂θ

∂q̇
, δq̇

〉
=

d

dϵ

∣∣∣∣
ϵ=0

L̂θ(q, q̇+ ϵδq̇)

= 2
d

dϵ

∣∣∣∣
ϵ=0

Im(q∗(q̇+ ϵδq̇))⊤JθIm(q∗(q̇+ ϵδq̇))

= 4Im(q∗q̇)⊤JθIm(q∗δq̇)

(C.1)

Notice that for any η ∈ s3 ∼= R3, we have

⟨π, η⟩ =
〈
T ∗
eLq

∂L̂θ

∂q̇
(q, TeLqξ), η

〉
=

〈
∂L̂θ

∂q̇
(q, TeLqξ), TeLqη

〉
=

〈
∂L̂θ

∂q̇
(q,qξ),qη

〉
= 4ξ⊤Jθη

(C.2)

which implies that π = 4Jθξ.

6Here we slightly abuse notation by identifying x ∈ R3 with the pure quaternion (0,x) ∈ Hp; the product qxq∗ is then
interpreted as quaternion multiplication, which then yields a pure quaternion corresponding to a vector in R3.

13


	Introduction
	Discrete Variational Mechanics with Forces
	Forced Discrete Systems
	Preservation of Symplecticity and Momentum

	Lie Group Forced Variational Integrator Network
	Translational Updates
	Rotational Updates
	Full Algorithm

	Experiments
	Conclusion
	Discrete Lagrangian on SO(3)
	Tangent Lift of 2mu-:6muplus1muS3 SO(3)
	Left-Trivialized Momenta and Velocities

