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Report Summary:

This report explores the integration of scalable Gaussian processes (GPs) into model-
based online planning, focusing on balancing computational feasibility with non-parametric
flexibility. Specifically, we investigate whether GP dynamics models can enhance the sam-
ple efficiency of model-based planning methods with less compromise in runtime. Our
experiments across simulated continuous control tasks evaluate various empirical aspects
of GP-based planning, including the impact of kernel selection (e.g., RBF v.s. Matérn)
and the efficiency of variational conditioning and deep kernel learning (DKL). While our
results suggest that Matérn kernels may improve contact dynamics modeling and DKL
could reduce computational overhead (albeit trading off sample efficiency), challenges per-
sist in environments with complex dynamics requiring more inducing points. Our study
provides preliminary insights into practical GP-MBRL integration, with recommendations
for future extensions in adaptive inducing point allocations, uncertainty quantification, and
kernel selection for domain-specific applications.

Statement of Contributions:

e We propose a parallelizable framework combining MLP base models with GP cor-
rections (Section , leveraging the model capacity of MLPs and the flexibility (as
well as sample efficiency) of GPs.

e We suggest decoupling GP training and inference (Section , which contributes to
the reduced total runtime and allows flexible choice of inference methods (e.g., LKI-
based correction in Section and dynamical local projection in Section [5.2.2)).

e The computer program that generates the results demonstrated in Sections are
available online at https://github.com/hanyang-hu/gp-mbrl, which includes
the implementation of GP training with subsampling and variational conditioning
(Section B.2)), DKL with parameter sharing (Section [3.3)), LKI-based correction (Sec-
tion , dynamical local projection (Section , etc. The components of MLP
model training and model predictive path integral (MPPI) are modified from the
official implementation of TD-MPC [33].

e By re-ordering the H-step value expansions from ([96], Theorem 1) and introducing
additional technical assumptions, we establish Theorem (1| and provide relevant dis-
cussions on the model-based value error of TD-MPC in Appendix [A] explaining why
TD-MPC achieves strong performance despite relying on deterministic models, and
demonstrating that the dynamics gap depends jointly on the model bias (measured
by the Wasserstein distance) and the underlying complexity of the MDP.


https://github.com/hanyang-hu/gp-mbrl
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1 Introduction

Model-based reinforcement learning (MBRL), particularly model-based online plan-
ning, enables more flexible and sample-efficient reinforcement learning compared to the
model-free alternatives [15, [83]. Meanwhile, Gaussian processes (GPs) may complement
this framework by providing expressive, non-parametric modeling—particularly when com-
pared to multi-layer perceptrons (MLPs). This synergy motivates the growing interest
in leveraging GP-based dynamics models within model-based planning (e.g., [8, B7]) in
the context of micro-data or sample-efficient reinforcement learning [13]. However, the
widespread adoption of GP-based planning remains hindered by two persistent challenges:
(1) the computational complexity; and (2) the curse of dimensionality.

Consequently, existing works on GP-based planning, or GP-based MBRL, are usually
restricted to low-dimensional state-action spaces and/or small-scale training datasets (e.g.,
[15, 20, 37, 83]). Even in these constrained settings, empirical benchmarks demonstrate
that GP-based MBRL can require computational times spanning multiple days [83].

Recent advances in scalable Gaussian process regressions (e.g., [55,82,[03]) and increases
in computational power hold promise for revitalizing research into GP-based reinforcement
learning. Notably, Bosch et al. [8] explored the flexibility of GPs in image-based planning,
overcoming the curse of dimensionality by learning the GP dynamics model in the latent
space encoded by neural networks. Nevertheless, most methods (e.g., [8,[57]) remain largely
confined to simple benchmarks such as the inverted pendulum. We posit that this limitation
stems from the stringent real-time requirements of iterative inference during planning. In
such settings, the associated computational overhead severely restricts the practicality of
GP-based planning in more diverse domains.

In this report, our goal is to close the runtime gap between the MLLP and GP dynamics
models to facilitate the real-time deployment of GP-based online planning to more diverse
domains. Our method is based on the following design choices (Section :

e Integration with TD-MPC [33]: Mitigating the computational bottleneck of GP-
based planning by requiring fewer model inferences in the iterative trajectory rollouts.

e GP-based correction of MLP dynamics: Using the MLP as a base model and
training GPs to correct the MLP predictions (possibly in parallel). This hybrid
approach potentially outperforms standalone GPs and uncorrected MLPs.

e Decoupled training-inference pipeline: Separating offline hyperparameter opti-
mization from online inference to minimize the training overhead of stochastic varia-
tional Gaussian processes (SVGPs) [47, [76] while preserving constant-time inference.

e Integration with DKL [92]: Balancing computational tractability and data effi-
ciency by combining MLP feature extractors with GP modeling.

We evaluate different variants of our method (namely, GP-TD-MPC) on several OpenAl
Gymnasium environments [78] and investigate their respective behaviors (Section [4]).



2 Background

2.1 Reinforcement Learning and Markov Decision Processes

Consider an agent interacting with an environment. At each step, the agent (partially)
observes the environment, takes an action, and then perceives feedback in the form of a
new observation and a numerical reward signal. In reinforcement learning (RL), the agent
improves its behavior over time via trial-and-error, seeking to maximize the cumulative
sum of reward signals [74]. In this regard, Markov decision processes (MDPs) serve as
a suitable formal framework, effectively representing essential features of an RL problem
such as transitions of states, uncertainty in environments, presence of goals, etc.

An MDP is defined by a tuple (S, A, M,r, py) with state-space S, action-space A,
transition probability distribution sy11 ~ M(+|ss, a;), reward function r : S x A — R, and
initial state distribution sg ~ p0(~)E| The agent selects actions according to its policy 7,
which can be a deterministic function 7 : S — A or a probabilistic distribution a; ~ (- | s¢).
The MDP’s objective is to choose a policy that maximizes the expected return (i.e., some
cumulative function of the random rewards).

Specifically, we consider the infinite-horizon discounted return

R(r) =Y ~'r(si,ar) (2.1.1)
t=0

where v € (0,1) is the discount factor and 7 = (sg, ag, $1,a1,...) is a trajectory sampled
by the agent acting in the environment. The optimal policy 7* could be defined by

7" = argmax E, pr()[R(7)] = argmaxE, _pr(, [Z (s, at)] (2.1.2)

where P™(-) denotes the distribution of trajectory T = (s, ag, s1, ag, - - .) sampled according
to the initial state distribution sop ~ po(-), the policy a; = m(s;) for deterministic policies
(resp. a; ~ 7(-|ay) for stochastic policies), and the dynamics s;y1 ~ M(-|s¢, at).

In practice, maximizing the objective in is challenging since we usually only
have access to a set of sampled trajectories with finite length collected from a (possibly
non-optimal) behavior policy. In this case, it is often useful to introduce the notion of value
functions, such as the action-value function Q@™ : § x A — R w.r.t. a policy w given by

Q" (s,a) =E, pr(, Z'ytr(st, a) ‘ so=s,a0=al . (2.1.3)
t=0

Notice that Q™ (s, a) equals the expected return E,[R(7)] when the agent starts in state s,
takes an arbitrary action a, and then continues to act according to the specified policy .

"We may also use so to denote the known initial state, the MDP is then defined by M = (S, A, M, r, s0).



Assume we can find the optimal value function @Q* without knowing the corresponding
optimal policy 7*, then the optimal policy could be extracted from Q* greedily as 7(s) =
arg max,e 4 Qo(s,a). This is the idea behind the classical Q-learning algorithm [86].

Suppose 7 is a deterministic policy, then the action-value function Q™ satisfies

Qﬂ—(’S) a) = T(Sa (I) +- ES/NM('|S,G) [Qﬂ(sla 77(8/))] (214)
which is known as the Bellman equation. We also have the Bellman optimality equation

Q*(sa a) = T(S? a) +- IEs’~M(~|s,a) [Q*(8/7 71—*(8/))]

% 2.1.5
= 1(5,0) + 7 Byar o lmax @' (s, )] (2:15)

The Bellman equations allow us to train a parameterized model 0y to approximate Q™
given a policy 7 (or Q*, which only requires solving max,c 4 Q*(s’,a))) by minimizing the
mean-squared Bellman error (MSBE)

L(97 D) = ]E(st,at,st+1,Tt)ND[(Q9(5t7 at) - yt)2] (216)

where D is a dataset sampled by a behavior policy and y; = 7 + YQg(St+1, 7(s¢41)) is the
temporal-difference (TD) target. Intuitively, when @y = Q™ and the behavior policy is ,
the loss L(#) is minimized according to the Bellman equations (2.1.4) and (2.1.5)).

However, this vanilla approach has two limitations: (1) It is unstable for neural network
approximators in practice; (2) It is hard to solve argmax,c 4 Qo(s,a) over a continuous
action space. To address the issue of unstable training, Mnih et al. proposed Deep Q-
Networks (DQN) [49], which randomly samples batches of transitions {(s¢, at, S¢4+1,7¢)}
from an experience replay buffer D to avoid issues of data correlation and non-stationary
distributions. Furthermore, DQN computes the TD target

Yt =1t + VQ0uurg (St41, T(St41)) (2.1.7)

by a target Q-network Qy,,,,, instead of the original (g, to stabilize the minimization of
the MSBE (2.1.6). After each optimization step, the parameters of the target Q-network
Otarg are updated by Polyak averaging with p € (0,1)

atarg — petarg + (]- - p)9 (218)

In addition, Lillicrap et al. proposed Deep Deterministic Policy Gradient (DDPG) [46],
extending deep Q-learning to continuous action space by training a deterministic policy my
that approximates arg max,c 4 Qo(s,a). Specifically, the policy parameters are learned by
maximizing the following objective

X B D[ Q0 (5, 70 (5))] (2.1.9)

via gradient ascent (where Otarg is fixed in each optimization step). Notice that the gradient
of the objective in (2.1.9) w.r.t. the policy parameters approximates the gradient of the
objective in (2.1.2)), as formally described in the deterministic policy gradient theorem [67].



2.2 Model-based Reinforcement Learning

All the aforementioned RL methods belong to the model-free family, where a dynamics
model of state transitions is not explicitly learned. In contrast, model-based reinforcement
learning (MBRL) methods learn a dynamics model to achieve better sample efficiency.
Most MBRL methods can be classified into three categories: (1) Dyna-style algorithms,
where model-free methods are trained on imaginary datasets generated by the dynamics
model (e.g., Dyna [73]); (2) Policy search algorithms, where the derivatives of dynamics
models are exploited (e.g., PILCO [20]); and (3) Online planning algorithms, where the
dynamics model is directly used in model predictive control (e.g., PE-TS [I5]). In this
report, we focus on online planning algorithms due to their flexibility during deployment.

At each step ¢, model predictive control (MPC) usually considers the following trajec-
tory optimization problem with a fixed horizon H

H
max FE [Z 'YiRG(St—l-iaat-&-i)] (2.2.1)
=0

agp4 g EAH

where the trajectories are sampled by the learned dynamics model s ~ My(-|s,a), whilst
the reward function could be either given or learned. In this report, we consider a learned
reward model Ry(s,a). In response to the observation s;, the agent takes the first action
a; of the optimal action sequence aj,, y, i.e.

mvpc(st) = argmax max E
at At4+1:t+H

H
Z ’}/lRQ(St_H‘, at+z~)] . (222)
i=0

Common choices of optimization algorithms for MPC include the cross-entropy method
(CEM) [9] and model predictive path integral (MPPI) [90]. Both CEM and MPPI are
population-based methods that iteratively update parameters for independent normal dis-
tributions (i.e., with diagonal covariance) that generate the new candidate solutions.

The primary difference between CEM and MPPI lies in the update rules for p and ¥
(Algorithm [1| Line . For CEM, the new mean and (diagonal) covariance parameters are
the mean and (diagonal) covariance of the elite samples {I'; }X | respectively, i.e.

K .
I A T — )2
Leb=l_k and ol = Li =)

= = (2.2.3)

W=
where the top-K estimated returns {qbpz }szl are not utilized. In contrast, for MPPI, each
elite sample I'} is weighted by Q) = exp(TquZ) with a temperature hyperparameter .
Specifically, the update rule of MPPI is

W= 16:17% and o) = max 2 k=1 (T — 1)

St St

el (2.2.4)



where ¢ > 0 is a linearly decayed constant introduced to prevent the algorithm from
becoming trapped in potentially suboptimal local solutions [33].

Algorithm 1 Model Predictive Control (MPC)

1: Input: Number of iterations .J, population size N, number of elite samples K, roll-
out horizon H, initial distribution parameters p, ¥.°, (learned) dynamics model My,
(learned) reward model Ry, current state s;.

2: for each iteration i =1,2,...,J do

3 Sample N action sequences of length H from N (p/=1, %771).

4 for all N sequences I' = (a¢, 41, ..., 01+1) do

5 for step j =0,1,...,H —1do > Estimate trajectory return ¢r
6: Update ¢r = ¢r + 7' Ro(St+j, artj)- > Initially setting ¢r =0
7 Predict si4j41 ~ Mg(St4j, aryj)-

8 end for

9 end for

10: Select the elite samples {I'; }/< | corresponding to the top-K returns {¢Fz}£{:1.

11: Update parameters p/, 07 for the next iteration based on {T';}X | and {ér: .
12: end for

13: Output: (af,af,,...,a7, ;) ~N(p',57)

Since the MPC optimization procedure is executed at each sampling time, strategies
that reduce the number of iterations J required for convergence are crucial for real-time
applications. For example, one may shift the mean parameter ,ugrev obtained from the
previous step and reuse it as p° in the current step [2, 33], assuming that the optimal
trajectory evolves smoothly over time. Furthermore, in LOOP [66] and TD-MPC [33], a
policy prior 7y is learned so that the trajectories generated by my are mixed with the sam-
pled trajectories (in Algorithm [1| Line 3)) to guide the optimization procedure. Specifically,
TD-MPC [33] learns an action-value function @y from the replay buffer and extracts the
policy 7y via DDPG [46] as described in Section

In addition to the number of iterations J, the planning horizon H is also a crucial factor
in MPC’s efficiency. Typically, a planning horizon from 20 to 40 works best for many
MBRL methods [83]. However, TD-MPC [33] requires a significantly shorter planning
horizon (e.g., H = 5) by augmenting the action-value function @y into the optimization
objective as a terminal value

H-1
max E Z Y (Staiy arei) + 77 Qo(sH, am) (2.2.5)
Ay g €EAH i—0

in contrast to the optimization objective in (2.2.1]). Intuitively, as TD learning approxi-
mates the global optimal solution, MPC only needs to focus on yielding the optimal local



behaviors, requiring shorter prediction horizons. In the meantime, the compounding errors
of the dynamics model prediction could also be alleviated with a smaller H.

To justify these insights, we aim to bound the H-step model-based value error of TD-
MPC. This error is important as it partially governs the suboptimality of model-based
planning methods [66], 84] (with another factor being the suboptimality of MPC optimiza-
tions occurred in each timestep). Intuitively, when the model-based value estimation has
large errors, the planner may incorrectly evaluate the expected performance of candidate
action sequences (or candidate policies), resulting in suboptimal behaviors.

In particular, we consider the Wasserstein distance W (-, -) instead of the total varia-
tion distance drvy(-,-) to define the dynamics model error €,,, as TD-MPC uses a deter-
ministic dynamics model (see discussions in Appendix . This approach may require
additional assumptions on the Lipschitz continuity of components in the original MDP
M = (S8, A, M,r, py), in contrast to the analysis of compounding errors based on the
Markov chain TVD bound [39, [66]. Nevertheless, such assumptions are not uncommon
in the theoretical analysis of MBRL methods (e.g., [19] [70]). For example, predictions of
MLPs with Lipschitz continuous activation functions (e.g., ReLU(+)), or Gaussian processes
with Lipschitz continuous kernels, would also be Lipschitz continuous [19].

Assumption 1 (Bounded Value Function). Suppose there exists a constant Vijax < oo
such that [V™(s)| < Vipax for all s € S and 7 € II.

Assumption 2 (Lipschitz Continuity). The reward function r is Lg-Lipschitz continuous,
and any deterministic policy m € Il is Lr-Lipschitz continuous. Furthermore, the stochastic
dynamics M is Ljs-Lipschitz continuous in the sense that

Doy (M(:|s1,a1), M(-[s2,a2)) < La||(s1,a1) = (s2,a2)||2 (2.2.6)
for all s1,s2 € S and ay, a2 € A, where Dyy(-,-) denotes the total variation distance [79].

Remark. Assumption [I| should be a slightly weaker condition compared to assuming
r(s,a) € [0, Rmax] and Viax = maxs V*(s) for all s € S (where V* denotes the opti-
mal value function) similar to those in Sikchi et al. [66]. For Assumption |2, when we are
only interested in policies determined by fixed action sequences (as in the MPC setting)
instead of being a deterministic function, we may consider L, = 0.

Based on these assumptions, we can derive an upper bound of the model-based value
estimation error, which decomposes into a dynamics gap and a return estimation gap.

Theorem 1 (H-step Model-based Value Error). Given a policy m € II. Suppose M s
a (deterministic) dynamics model such that maxg, W(M(:|s,a), M(-|s,a)) < €, T is an
approximate reward model such that maxs , |r(s,a)—7(s,a)| < €, and Q™ is an approximate



action-value function such that max . |Q™(s,a) —Q7 (s, a)| < ¢,. Let V™ denote the ground-
truth value function and V™ denote the model-based value estimation

H—
V”(s) = E%Nﬁw(.‘s) [Z Y (se, ar) + ’)/HQ(SH, am) (2.2.7)

where 7 = (so,7(s),...,sm,7(sy)) is a trajectory sampled by M and 7 starting at the
initial state so = s (i.e., T ~ P™(:|s)), then there is a constant factor Ky such that

. - 1 —~H
V() — V’T(s)‘ <Kt e+ =, 4, (2.2.8)
1—x 1—7
dynamics gap return estimation gap

for any initial state s € S, where K satisfies Ky < (Lr + 29ViaxLar)/1 + L2.
Proof. We defer the proof to Appendix O

Theorem [1| decomposes the value error bound into the sum of the dynamics gap and
the return estimation gap. Interestingly, the dynamics gap is influenced not only by the
dynamics model error €,, but also by the complexity of the original MDP, which is deter-
mined by the Lipschitz constants of the ground-truth stochastic dynamics M, the reward
function r, and the policy class II. On the other hand, when the model M closely approx-
imates the ground-truth dynamics and has a small Lipschitz constant, the compounding
error of multi-step predictions is also expected to be small (see Appendix .

We may also observe that the planning horizon H introduces a trade-off between the
dynamics gap and the return estimation gap [66]. When H = 0, the learned dynamics
model M and the reward model # have no effect on the RHS of -, as TD-MPC would
become model-free and the upper bound is simply the value estimation error €,, which
could be large in the low-data regime as evidenced by the superiority of MBRL methods in
such cases (e.g., [15,[39]). As H increases, the model error compounds, resulting in a larger
dynamics gap, while the effects of ¢, decay by a factor of ~vH. Furthermore, this analysis
also applies to MPC without the TD learning component. Consider QQy = 0, then the value
error becomes €, = max;, o |Q™ (s, a)|, which would potentially be much larger compared to
max, o |Q™ (s, a) —Qp(s, a)| with a learned action-value function, justifying the combination
of temporal-difference learning and model-based planning in (2.2.5)).

Remark. It should be possible to leverage the result of Theorem (1| (potentially, with some
minor modifications) to establish a performance lower bound for TD-MPC, following steps
similar to those of Sikchi et al. [66]. This lower bound would be based on the RHS of
2.2.8), as well as a suboptimality gap €, incurred during the MPC optimization w.r.t.
2.2.5). However, we do not elaborate on this as it may not yield additional insights.




2.3 Gaussian Processes for Machine Learning

The Gaussian process (GP) [61] is a compelling alternative to neural networks for
machine learning. It provides a mechanism to directly quantify the uncertainty and is
data-efficient by its Bayesian non-parametric nature, making it especially suitable in the
case of learning robot controllers with a handful of trials since real-world data are usually
expensive to gather [20]. However, similar to other Bayesian methods, the standard GPs
are computation-heavy, hence requiring specific measures to achieve scalability, including
structural assumptions on kernel functions/matrices [23], 03], kernel approximations [59,
89|, etc. In this subsection, we briefly overview the mathematical formulation of GPs and
the training and inference of exact GP models for regression tasks.

A Gaussian process is a function prior f ~ GP(m(-),k(-,-)) specified by the mean
function m(-) and the kernel function k(-, -) (i.e., the function-space view) [61]. Conditioned
on the input X = (x1,...,x,) € X" where X C R” and observations y = (y1,...,%»), the
value of the function f (x) at any given location x € X is normally distributed with mean
and variance in closed-form expressions of m(-) and k(-,-).

Specifically, suppose y = f(z) + ¢, f ~ GP(0,k(-,-)) (i.e., m(-) = 0), and € ~ N(0,02).
Given the training data D = (X,y) and test point x*, let Kxx be the Gram matrix
of X defined by [Kxx]i; := k(x4,%x;) and kxx= be an n-dimensional vector defined by
[kxx+]i := k(x;,x*), put Kyy = Kxx + 021, then the predictive posterior distribution of
f(x*) is a normal distribution with:

E[f(x*) ’X7Y7X*} = k;r(x* A)_(Ale

* * * % T -—1 (231)
Var[f(x*) | X, y, x"] = k(x",x") — kxye Ky K

When it comes to an arbitrary mean function m(-), we could equivalently apply equations
on the transformed data (x,y) — (x, y—m(x)), then add m(x) back to the posterior
mean prediction. Notably, the posterior variance is independent of the choice of m(-).

The most popular choice of kernel functions are the stationary kernel functions such as
the Radial Basis Function (RBF) kernel or the Matérn kernel [61]:

D (x — .)2
kiPY (x1,%2) = exp <_ Z 1712[”2271>

i=1 (
D v D
Matérn 2 o |71, — @2, V3 |71, — @2,
klvlj (Xl,XQ) = W QVZT KV QVZT
i=1 v i=1 v

where [ € Rgo is the lengthscale hyperparameter indicating the importance of each dimen-
sion, I'(+) is the Gamma function, and K, (-) is the modified Bessel function of the second
kind. For the Matérn kernel, v > 0 is a hyperparameter that indicates the differentiability
of the function sampled from the corresponding GP. As v — oo, the Matérn kernel approx-
imates the RBF kernel. In practice, they are often wrapped by a scale kernel such that
Kocaled = U?Korig where U]% is the scale parameter.

(2.3.2)

8



These kernels are stationary in the sense that, for any x;,xo € X, the kernel value
k(x1,x2) only depends on x; — X2, independent of their exact positions (hence we could
write k(x; — x2) = k(x1,%2)). In general, Bochner’s theorem [62] guarantees that any
stationary kernel k(-) must be the Fourier transform of a non-negative measure p(-), i.e.

k(x) —x2) = / pw)ed® 17%) quy = By, €0 (1) 6w (%2)] (2.3.3)

where §w( ) = "% Since k(-) is symmetric, the spectral density p(-) in the frequency
domain must also be symmetric. Therefore, if we approximate the spectral density
p(-) by a symmetrlcally weighted mixture of @ square-exponential functions, then the
corresponding kernel, known as the spectral mixture (SM) kernel [91], takes the form

T1i — T4 2 D
klw# X1,X2) qu exp < Z “;[”22)> cos (Z[M]W(Q:M — x2,)> (2.3.4)

q,? i=1

which is particularly effective for extrapolation due to its quasi-periodic structure [91 [92].
Moreover, by the universal function approximation property of the mixtures of Gaussians,
SM kernels can approximate any stationary kernel arbitrarily well given a sufficiently large
number of mixture components ), which mitigates the kernel selection problem [53]. Nev-
ertheless, the SM kernel typically requires greater computational resources (e.g., memory
and processing time).

The stationary covariance structures generally assumed by these kernels may not ade-
quately capture variability in non-stationary data [6]. Furthermore, these kernels may suffer
from the curse of dimensionality (CoD) as the distance between points in high-dimensional
space tends to increase [43]. Consequently, in non-stationary and/or high-dimensional set-
tings, we may introduce a neural network feature extractor as kernel hyperparameters,
known as deep kernel learning (DKL) [92], which enjoys the flexibilities of both neural
network architectures and non-parametric kernel methods.

Training a GP model involves maximizing the marginal log-likelihood (MLL) w.r.t. the
kernel hyperparameters 6 (e.g., the lengthscales [, the DKL parameters, etc.)

L=logp(y|X,0) o —y Kyky —log|Kxx]|. (2.3.5)
—_———— N——
error complexity

Furthermore, the gradient of £ over 6 is given by

0L TR aKXXK ! K, aKXX) (2.3.6)

09 XX a6 xxY ( XX o0

since Kxx is symmetric positive definite [61].



From equations (2.3.1)), (2.3.5)), and (2.3.6)), the training and inference of GPs involve
computing the matrix solves K)_(ﬁ(y and K)}ﬁ(kxx*, the determinant term |Kxx|, and

the trace term tr (K;&_alg%)’ which are the main computational bottlenecks. A typical

method used for computing these terms is the Cholesky decomposition [30], which factor-
izes the symmetric positive definite matrix Kxx into LLT where L is a lower triangular
matrix so that computing matrix solve and log determinants take O(n?) and O(n) times
respectively. However, directly applying Cholesky decomposition is inefficient for large-
scale applications since it takes O(n?) time for computation, O(n?) space for storage, and
is less amenable to GPU acceleration.

Common approaches to enhance GP’s scalability include black-box MVM-based meth-
ods [28] [82], subsampling [35, O8], kernel matrix approximation (e.g., Fourier features
[52, [59], Nystrém approximation [89], Lanczos decomposition [55], etc.), structured ker-
nel interpolation (SKI) [29, [69, 03], and stochastic variational Gaussian processes (SVGP)
[47, [76]. We provide an overview of some scalable GP regression methods in Appendix
with connections to our focus on model-based planning when applicable.

2.4 Gaussian Processes for Reinforcement Learning

The application of Gaussian processes in reinforcement learning has been extensively
studied, spanning areas such as temporal-difference learning (e.g., GP-SARSA [26] 48])
and model-based policy search (e.g., PILCO [21], Black-DROPS [12, [13], and BAGEL
[75]). The common practice in model-based approaches is to train dim(S) independent
GPs, each takes (s,a) € S x A as input and predicts one entry of the next state s’ € S.
This has often been successful for low-dimensional robotics tasks within limited interaction
with the real machine. However, many of these methods fail to scale in high-dimensional
environments and are extremely time-consuming to train on large datasets [15] [83].

The scalability issue of GPs would be further amplified in GP-based planning, where
the time constraint is more stringent for real-world applications. To enhance computation
efficiency, previous approaches mainly employ sparse GPs and approximate uncertainty
propagation [37, 8I]. To alleviate the curse of dimensionality (e.g., for pixel-based plan-
ning), the deep latent Gaussian process dynamics (DLGPD) approach [§] trains the latent
dynamics GP model jointly with a neural network auto-encoder, optimizing the evidence
lower bound (ELBO) composed of reconstruction loss terms and a KL regularization term
similar to the variational auto-encoder [41] and several other MBRL methods based on
pixel reconstruction (e.g., [31), 32]).

Another common issue for GP-based RL methods is numerical stability, which becomes
particularly pronounced when combining GPs with neural network encoders. To address
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this, DLGPD [g] incorporates a signal-to-noise ratio (SNR) penalty into the loss function

dim(S)

Lsxn= Y (log(af’k/ae’k)y (2.4.1)

— log 7

where 7, p are hyperparameters, 0]20 ;. 1s the scale parameter and 0’€2k is the noise variance
of the k-th independent GP. This regularization term encourages the noise variance 052 i to
be appropriately large w.r.t. the scale O'J%’k, allowing more stable numerical solutions for
K)_(ﬁ( = (Kxx + 02I)~! required for GP training and inference described in Section

3 Methods
3.1 GP-based TD-MPC

In this report, we adopt the Temporal Difference Model Predictive Control framework
(TD-MPC) [33] as our baseline. As detailed in Section TD-MPC combines short-term
dynamics predictions (MPC) with long-term value estimations (TD learning), enabling ef-
ficient decision-making in complex environments. Notably, we have chosen to implement
the encoder-free variant of TD-MPC. This decision is motivated by its improved training
stability (particularly for GP models) and sample efficiency in the low-data regime. Al-
though it exhibits a slight disadvantage compared to the original TD-MPC according to
the referenced experiments [33], the trade-off in stability makes it a favorable choice for
our implementation. In addition, we have noticed that incorporating the SNR penalty
described in Section is not necessary in this case.

Similar to TD-MPC, our agent iteratively trains the model using data collected from
previous interactions while acquiring new data through online planning. The encoder-free
variant of TD-MPC consists of the following MLP components parameterized by 6:

e Dynamics Prediction:
§t+1 = Ma(st, at)

¢ Reward Prediction:
7t = Ro(s¢, at)

e Action-Value Prediction:
4t = Qo(5¢, a¢) := min {Qél)(st, at), QéQ)(St, at)}
e Deterministic Policy:

ay = 776(31&)
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where the action-value prediction is taken as the minimum of two learned Q-networks, a
technique known as clipped double Q-learning [27], which helps mitigate the overestimation
bias in action-value predictions.

During each iteration, TD-MPC minimizes a temporally weighted objective

t+H '
L(O;T) = NPL(6;Ty) (3.1.1)
i=t
where A € (0,1) is a discount factor (that may differ from ) and I" ~ B is a trajectory
(St,at, 7ty St+1)et+m sampled from a replay buffer. In particular, the prioritized experience

replay (PER) [63] strategy is employed, which replays transitions with larger TD loss more
frequently. Moreover, the single-step loss is given by

L(6;T) = c1 ||Ro(si, ai) — ril5
reward loss
+¢2 | Qa(si, ai) — (ri + YQpyury (Si1, T(si41))) I3 (3.1.2)
TD loss
+ c3 ||sip1 — Mo(si, ai) 3

dynamics loss

with hyperparameters ¢y, co, c3 € Rsg. Subsequently, the policy 7y is learned by minimizing
the following objective

t+H
L(0;T) == > N "'Qq(si,m9(s:41)) (3.1.3)
i=t
which is a temporally weighted variant of DDPG [46] described in Section
In this report, we explore the application of Gaussian processes in model-based planning
by replacing the dynamics model My and the reward model Ry with GPs, aiming to further
enhance the sample efficiency of MBRL methods while adhering to constraints for real-time
applications. However, rather than directly replacing the MLP models with GPs, we treat
My and Ry as “base models” and use GPs to learn the MLP model residuals. In particular,
the i-th training target (i.e., the i-th entry of the y term in equation ) for the
multi-output GP that jointly models the dynamics and reward is replaced by the residual
Vi — fo(xi) = (si+1 — Mp(si,ai),mi — Rg(8s,a;)) instead of the ground-truth y; = (si+1,7:),
incorporating the prior assumption that the base model provides a reasonably accurate
approximation (see Figure [I)). During inference, the GP predictions will be added to the
predictions of the base models, serving as a correction term as follows

output(x*) = fo(x*) + ki Kk (y = fo(X)) (3.1.4)

GP correction
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where fp is the base model (i.e., the dynamics model My and the reward model Ry). Notice
that this could be interpreted as treating the base model fy as the prior mean function,
hence it should not affect the uncertainty quantification of GPs.

We refer to this combined approach, integrating GP models with TD-MPC, as GP-TD-
MPC. By employing the MLP base model fy as the prior mean function, GP-TD-MPC
distinguishes itself from similar GP-based planning methods that forward-propagate the
predictive mean, such as GP-E (in PE-TS) [15] and DLGPD [§], which allows us to leverage
the representational capacity of neural networks as well as the non-parametric flexibility
of GPs. Notice that, in such settings, we do not exploit the GP’s inherent capability for
uncertainty quantification. However, constant-time probabilistic inference can always be
resumed via caching [55] or pathwise conditioning [94] 05], particularly when employing
SVGPs [47, [76], which we shall elaborate in Section and Section [5.3.2]

Performance Comparison (Pendulum-v1) Inducing Points Comparison (Pendulum-v1)
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Figure 1: Comparison of the performance and number of inducing points (at most 256)
determined by the pivoted Cholesky decomposition (as detailed in Section for different
design choices tested in the inverted pendulum swingup environment. For GP-TD-MPC,
we use the standard RBF kernel. The results displayed are averaged over 5 repetitions.
The following options are compared with the TD-MPC (no latent) baseline: (1) GP model
trained with the residual targets s;+1 — Mpy(s;,a;) and r; — Ry(s;,a;), which correct the
output of the base model; (2) GP model trained with the ground-truth targets s;+1 and
r;, which also correct the output of the base model; and (3) GP model trained with the
ground-truth targets s;11 and r;, but directly make predictions without correcting the base
model. Only option (1) outperforms the baseline.
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3.2 Scalable Training and Inference

Notice that the training process of TD-MPC aforementioned cannot be directly applied
to GP-based dynamics and reward models. The key limitation arises from the GP training
loss in equation , which does not naturally decompose into a sum of independent
terms suitable for mini-batch stochastic gradient descent as well as temporally weighted
objectives. More importantly, as the size of the dataset increases, computing the MLL loss
and its derivative may become computationally inefficient.

A common approach to address this issue is stochastic variational Gaussian processes
(SVGP, see Appendix , which approximates exact GPs by introducing a variational
distribution u ~ ¢(+) over pseudo targets evaluated at m inducing points Z, generating the
latent functions via p(f|Z,u) [47, [76] so that the MLL in can be bounded below,
known as the evidence lower bound (ELBO), by applying Jensen’s inequality

log p(y| X, 0) > Equyp(eju) [log p(y[f)] — Dxr(g(u)|[p(uw)) (3.2.1)

which admits stochastic gradients since the likelihood p(y|f) = [[\; p(y:|fi) usually fac-
torizes over data instances.
Moreover, the GP posterior inference in (2.3.1) can be approximated by

E[f(x*) [ X,y,x7]
Var(f(x*) | X, y, "]

Q

Q

Var[f(x*)| Z, x| (3.2.2)

]E[f(X*) ‘ Z, X*] = k—er*Kgému
[
k(x*,x*) — ko K, L (K77 — Su) K 7 LK 75~

when the variational distribution ¢(-) of the pseudo target u evaluated at Z is given by
N(my, Su). The GP-based correction in equation can be modified correspondingly
by replacing the (residual) training data (X,y — fy(X)) with the pseudo data (Z,u) such
that u ~ N (my, Sy). We only consider the predictive mean of the corrected output, hence

output(x*) = fp(x*) + k;x*f(gému : (3.2.3)
—_——
SVGP correction

The term a = Kgému could be cached to achieve O(m)-time inference.

As a result, SVGPs not only enable more flexible training schemes but also has greater
or comparable inference efficiency for applications in online planning compared to other
approaches such as sparse GPs [64], [68], structured kernel interpolation (SKI) [29, O1],
and caching [55] [82] (see Figure 2| for an empirical comparison). Nevertheless, it would
introduce O(m?) additional learnable parameters, primarily from the covariance matrix
Su of the variational distribution ¢(-). This increases the computational requirement for
training compared to standard GPs, which typically optimize O(D) parameters only (e.g.,
the lengthscales [ € RY,).

Instead of using the ELBO loss of SVGP, we employ the subsampling strategy
for GP training as suggested by Hayashi et al. [35] and Zhao et al. [98], which minimizes
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Figure 2: Comparison of the runtime in the Pendulum-v1 environment. The SVGP cor-
rection in equation is at least as fast as cached exact/sparse GPs, hence we only
compare it with local kernel interpolation (LKI), which is one of the key techniques used
in structured kernel interpolation (SKI) [91]. (Note. For more details of LKI and SKI,
see Section and Appendix . The LKI’s mean prediction is O(1)-time with any
number of inducing points. Nevertheless, its runtime is considerably longer than that of
variational conditioning, suggesting that the interpolation step introduces additional over-
heads. Notice that since the training methods are similar, the runtime difference is mainly
due to the different caching and inference speeds.

the MLL loss in equation (2.3.5) with a subsampled mini-batch of dataEI7 avoiding the need
to introduce O(m?) additional parameters. Nevertheless, we could still enjoy the advantage
of constant-time inference of SVGPs by considering the following parameterization used in

online variational conditioning (OVC) [47] (see Appendix [B.3]).
c=Kzx3, ' (y — fo(X)) €R™, C=Kzx3, ' Kxz € R™™ (3.2.4)

where ¥y = ¢2I denotes the covariance of the likelihood p(y |f) and we condition on
the MLP model residuals y — fg(X) as described in Section The optimal variational
distribution ¢ = N (my, Sy) of the pseudo targets w.r.t. the inducing points Z is given by

mu:Kzz(Kzz—FC)flC, Su:Kzz(Kzz—i-C)flKZZ (325)

which can be computed within O(nm?) time.
To reiterate, we propose to use subsampling for efficient mini-batch training while em-
ploying variational conditioning (or other scalable inference methods) during inference to

2Tt is important to note that the subsampling strategy for GPs assumes the batches are sampled randomly
[35] or quasi-uniformly [98] from the dataset. In principle, we should not use the transitions sampled from
prioritized experience replay (PER) [63] used by TD-MPC.
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maintain constant-time predictions. This approach might seem counterintuitive, as the
approximation schemes are different during the training and inference stages. However,
it is motivated by the insight that GP training primarily involves learning hyperparame-
ters—that is, establishing a function prior that best explains the data—whereas GP infer-
ence is inherently more data-dependent due to its non-parametric nature.

For inducing point selection, we could employ the pivoted Cholesky method [34], which
selects up to m inducing points in O(nm?) time and may terminate early if the truncation
error, controlled by the trace norm of the Schur complements in the Cholesky decomposition
steps, falls below the specified tolerance. Moreover, when m is large, we may employ
farthest point sampling (FPS) [25], which selects a low-discrepancy subsampled point set
by balancing between filling up the space and separating the selected points. Notably, FPS
requires O(nm) time computation and O(n) storage, which is more efficient than pivoted
Cholesky decomposition. Therefore, when dealing with large datasets, we may first use
FPS to select a low-discrepancy candidate set, then apply pivoted Cholesky upon them.

3.3 Deep Kernel Learning with Parameter Sharing

We would also like to investigate the effect of deep kernel learning (DKL, as described
in Section [92] in mitigating the potential curse of dimensionality and enhancing the
expressive power of standard kernels, such as the RBF and Matérn kernels. Furthermore,
in contrast to previous applications of GPs in MBRL where independent GPs are employed
for multi-dimensional outputs (i.e., dynamics and reward predictions), we share the hidden
layer of the MLP feature extractor used in DKL, which may enhance sample efficiency and
introduce dependencies between different outputs similar to MLPs (see Figure |3)).

Figure 3: Examples with 3-dimensional input and 2-dimensional output. (a) MLP archi-
tecture; (b) DKL architecture (with 2-dimensional features for each independent GP).
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4 Results

Our implementatiorﬁ of the GP models for dynamics and reward prediction is built
upon the GPyTorch library [28], allowing us to train a batch of GPs in parallel. However,
we do not use the implementation of online variational conditioning (OVC) [47] available
in GPyTorch due to integration challenges with the rest of our framework. Instead, we
directly implement the variational conditioning strategy described by equations and
, leveraging GPyTorch’s native support for numerical linear algebra, including the
pivoted Cholesky method from its LinearOperator package.

We compare different variants of GP-TD-MPC with the TD-MPC (no latent) baseline
across five OpenAl Gymnasium environments [78] (see Figure . All experiments were
conducted on a ROG Zephyrus M16 (2023) GU604 laptop equipped with an Intel i9-13900H
(2.60 GHz) CPU, 48GB of RAM, an NVIDIA RTX 4070 (8 GB) GPU, and an Intel Iris
Xe graphics (23.8 GB)[]

Unless otherwise stated, we use the hyperparameter settings similar to those specified
in TD-MPC [33] with the following modifications:

e Number of Inducing Points: m < 256

e Pivoted Cholesky Error Tolerance: le—6

e Batch Size: 256 for both MLP and GP training

e DKL Features: 3-dimensional features for each independent GP

e Hidden Dimensions: 256 hidden units for all MLPs (including DKL components)
e Initial Rollouts: 2 ~ 8 random rollouts

e Planning Horizon: H =5

e Exploration Scheduler (€): Linearly decayed from 0.5 to 0.05 over the first 2/3 of the
total training steps

Each method (i.e., GP-TD-MPC with different kernels) was repeated five times across
different random seeds to ensure robustness in the results, although some methods, par-
ticularly those using the SM kernel, were omitted in certain environments due to their
prohibitive runtime and memory requirements. The learning curves for different methods
we demonstrated in this section would represent the average of the highest total rewards
observed up to the current timestep.

3The code and hyperparameter settings are available at https://github.com/hanyang-hu/gp-mbrl.
4For computations requiring extensive GPU memory, the NVIDIA GPU is prioritized; if its memory is
exhausted, the integrated graphics’ shared memory is used as a fallback.
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(a) Pendulum (b) 2-DOF Reacher (¢) 7-DOF Pusher

(d) Swimmer (e) Half Cheetah

Figure 4: Overview of the experiment environments in OpenAl Gymnasium [78].



Furthermore, to ensure reproducibility across trials with identical random seeds, we
would like to limit the number of sources of nondeterministic behavior in the environment.
Therefore, we configure PyTorch [54] to use deterministic algorithms, although they are
often slower than their nondeterministic alternatives.

4.1 Inverted Pendulum Swingup

The inverted pendulum swingup problem (Figure [f{(a)) is a classic continuous-control
problem. The system involves a pendulum with one fixed end. Starting with a random
initial pose, the objective is to apply torque to the other free end to swing the pendulum
upward until it stabilizes in an upright position. The observation is a 3-dimensional tuple
(z,vy, 9), which is composed of the coordinates of the pendulum’s free end and its angular
velocity. The action should be a torque 7 € [—2, 2] applied to the pendulum. The ground-

truth reward function r : S x A — R is defined by
r((x,y,0),7) = —(0* + 0.1 x 62 + 0.001 x 72) (4.1.1)

where 6 € [—m, 7] is the pendulum’s angle obtained from the coordinates (z,y), with § =0
meaning the pendulum is in the upright position.

We conducted experiments on the Pendulum-v1 environment over 15 episodes, begin-
ning with 4 episodes of random rollouts. The results, illustrated in Figure [5] demonstrate
that GP-TD-MPC with the RBF kernel and GP-TD-MPC with the SM kernel (combined
with DKL) consistently outperform the TD-MPC baseline.
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Figure 5: Comparison of the performance and number of inducing points (at most 256)
in the Pendulum-v1 environment. GP-TD-MPC with the RBF kernel and the DKL+SM
kernel performed better than the TD-MPC baseline. In the meantime, all variants of GP-
TD-MPC outperform the baseline in the first 2000 timesteps.
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4.2 Multi-Joint Dynamics with Contact (MuJoCo)

MuJoCo (Multi-Joint Dynamics with Contact) [77] is a general-purpose physics engine
designed for efficient and accurate simulation of articulated structures interacting with their
environments, particularly through physical contacts. We perform experiments on MuJoCo
environments available in the OpenAl Gymnasium [78]. However, due to the deprecation
of Windows support for MuJoCo’s Python bindings, all experiments are conducted on the
Windows Subsystem for Linux (WSL).

4.2.1 2-DOF Reacher

The “2-DOF Reacher”, illustrated in Figure (b), is a 2-joint robot arm that attempts
to move the robot’s end effector (i.e., the fingertip) close to a target. The observation space
is S = RV, where each observation s € S is composed of cosine/sine of the angles of the
two arms, the angular velocities of the two arms, the coordinates of the target, and the
vector between the target and the reacher’s fingertip. The action space is A = [—1,1]?,
which represents the torques applied to the two hinge joints. The reward is defined by the
negative of the distance between the fingertip and the target, plus an action penalty.

We conducted experiments on the Reacher-v5 environment over 20 episodes, starting
with 2 episodes of random rollouts. The results, shown in Figure [0 demonstrate that all
variants of GP-TD-MPC deliver comparable performance to the baseline.

4.2.2 7-DOF Pusher

The “7-DOF Pusher”, illustrated in Figure (c), is a multi-jointed robot arm that is sig-
nificantly more complex compared to the “2-DOF Reacher” aforementioned. Its objective
is to push a target cylinder (referred to as the object) to a goal position using the robot’s
fingertip. The observation space is S = R?? and the action space is A = [—2,2]", both of
which have the highest dimensionality among the tasks we consider in this report. The
reward incentivizes keeping the fingertips close to the object and positioning the object
near the goal. Similar to the “2-DOF Reacher”, it includes an action penalization term.

We conducted experiments on the Pusher-v5 environment over 30 episodes, beginning
with 8 episodes of random rollouts. Variants of GP-TD-MPC using the SM kernel are
omitted hereafter due to prohibitive runtime and memory demands. The results are sum-
marized in Figure[7] with all variants of GP-TD-MPC performing similarly to the baseline.

4.2.3 Swimmer

Depicted in Figure [|(d), the “Swimmer” [I7] is a robotic system composed of three
segments connected by two rotors. Operating in a two-dimensional pool, its objective
is to propel itself rapidly to the right by applying torques to the rotors and leveraging
fluid friction. The observation space is S = R®, where each state s € S consists of the
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Figure 6: Comparison of the performance and number of inducing points (at most 256) in
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the Reacher-vb environment.
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Figure 7: Comparison of the performance and number of inducing points (at most 256) in
the Pusher-v5 environment.
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Figure 8: Comparison of performance and number of inducing points (up to 256) in the
Swimmer-v5 environment. Numerical issues that occurred at the variational conditioning
step for GP-TD-MPC with the Matérn kernels are reflected in the observed drop in the
number of inducing points (in the right figure).
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Figure 9: Comparison of performance and number of inducing points (up to 1024) in the
HalfCheetah-v5 environment.
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position values (i.e., angles) of the robot’s body parts and the corresponding (angular)
velocities. The absolute position of the swimmer in the two-dimensional pool is excluded
to introduce the inductive bias that the optimal policy could be position-agnostic. The
action space is A = [—1,1]?, which represents the torques applied to the two rotors. The
reward incentivizes the swimmer to move forward with action penalization.

We conducted experiments on the Swimmer-v5 environment over 30 episodes, beginning
with 4 episodes of random rollouts. To reduce the total runtime, we implemented an action
repeat of 2, where each action output by the agent is executed twice consecutively in the
environment. Since the training dataset eventually grows to 1.5 x 104 samples, we employed
FPS to select 4096 candidate points from the training data before applying the pivoted
Cholesky decomposition to avoid memory overflow, as described in Section [3.:2] The results
are presented in Figure |8l All variants of GP-TD-MPC fail to outperform the baselineﬂ

4.2.4 Half Cheetah

Depicted in Figure (e), the “Half Cheetah” [87] is a 2-dimensional robot with 9 body
parts and 8 joints. The observation space is R'7 and the action space is A = [~1,1]6
(torques are only applied to 6 joints excluding the head and the torso). The reward
incentivizes the half cheetah to move forward as fast as possible with action penalization.

We conducted experiments on the HalfCheetah-v5 environment over 30 episodes, be-
ginning with 4 episodes of random rollouts. Similar to the settings in the Swimmer-v5
environment, we implemented an action repeat of 2. However, we increase the limit of
inducing points to m < 1024. The results are shown in Figure [0] GP-TD-MPC with the
Matérn kernel consistently outperforms the baseline.

4.3 Key Findings and Insights

From the experimental results, we derive the following observations:

1. GP-TD-MPC with DKL typically requires fewer inducing points to achieve the error
tolerance for the pivoted Cholesky method.

2. GP-TD-MPC with the Matérn-3/2 kernel consistently matches or even outperforms
the TD-MPC baseline.

Our first observation suggests that DKL facilitates a more structured and data-adaptive
feature representation, hence enabling the pivoted Cholesky method to identify a sparser
subset of inducing points that could efficiently approximate the full GP posterior. Such
efficiency gains align with the objectives of real-time planning. However, this comes at
the cost of sample efficiency (particularly in the low-data regime) due to the additional

5We have also tried to increase the limit of inducing points to m < 1024, although we did not observe
any performance improvements.
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parameters required for training an MLP feature extractor. We have observed that GP-TD-
MPC variants with DKL typically perform worse than their standard kernel counterparts.

For the second observation, we hypothesize that the Matérn kernel is better at capturing
the sharp changes in the dynamics due to contacts, which should be prevalent in tasks like
HalfCheetah-v5. To illustrate this, we visualize a toy example in Figure In particular,
we consider the following two-dimensional trajectory of a bouncing ball:

@EED N (vy (t—T|4)) ing (t— TL%J)2> (4.3.1)

where v, v, are constants and T = 2v,/g. We have trained GP models with the RBF
kernel and the Matérn-3/2 kerne]ﬁ, as well as an MLP model with 256 hidden units and
the ELU(+) activation function (as in the settings of TD-MPC [33])

T, if x > 0,

4.3.2
a(e’”—l), if x <0. ( )

ELU(x) = {

which is only once differentiable everywhere with o = 1 [16]. The dataset consists of 500
points on the trajectory. The GP models are trained with 200 iterations and the MLP
model is trained with 2 x 10* iterations. We may observe that the GP model with the
Matérn kernel provides the best prediction result. On the other hand, the variant with the
RBF kernel fails to produce reliable predictions in regions lacking training data.

One possible explanation for this phenomenon is that the RBF kernel is smooth, im-
posing assumptions that are unrealistic for many physical processes [61]. However, we
could also understand this phenomenon from a frequency-domain perspective: the spectral
densities of the RBF kernel and the Matérn kernel are given by

PpRBY(s) = (2r1?)P/2 exp (—2772l252)

, 2PxP2T (v + D/2)(2v)” (2v
Matérn 2.2
pl,l/ (8) - F(V)l2y ( + 41t°s

~(v+D/2) (4.3.3)
g i)

which resembles the probability density functions of multivariate Gaussian distribution
and multivariate t-distribution (with 2v + D degrees of freedom) respectively [61HZ| Since
the latter has heavier tails, the Matérn kernel is more robust in accommodating high-
frequency “outliers” compared to the RBF kernel. As shown in Figure to capture the
abrupt changes in direction caused by contact events, the RBF kernel compensates by
overfitting to an excessively small lengthscale, resulting in poor generalization.

5We have also tried out the SM kernel, although it did not work in this case.
"We consider a 1-D lengthscale hyperparameter | € R~q without automatic relevance determination [88].
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Figure 10: Visualization of the Matérn kernel’s ability to model contact dynamics.

25



5 Discussion

5.1 Runtime and Efficiency

Table[I] presents the total runtime of TD-MPC and various GP-TD-MPC variants across
different tasks, averaged over five trials. For lower-dimensional tasks such as Pendulum-
vl, Reacher-v5, and Swimmer-v5, the runtime of GP-TD-MPC generally remains within
1.5 times that of the baselineE] Notably, in the Swimmer-v5 task, increasing the max-
imum number of inducing points to m < 1024 does not result in a significant runtime
increase, suggesting that the GPU’s parallel computation capabilities have yet to be fully
utilized. However, for tasks with higher dimensionality and larger training datasets, such
as HalfCheetah-v5 (where S = R17 and takes 1.5 x 10° data points), GP-TD-MPC typically
requires 2-3 times the runtime of the baseline, except for GP-TD-MPC (RBF+DKL).

We have identified several factors in our implementation that may hinder the compu-
tational efficiency of GP-TD-MPC, both in comparison to the baseline and in potential
real-world applications:

e The SVGP correction in equation could be computed in parallel (e.g., via
multiprocessing) with the inference of the base model fy, further reducing the run-
time. However, for simplicity, our implementation executes the SVGP correction
sequentially after the inference of the base model.

e To facilitate reproducibility, we configure PyTorch to use deterministic algorithms,
which are generally slower than their nondeterministic counterparts.

e Running simulations on Windows Subsystem for Linux (WSL) may be less efficient
compared to native Linux environments due to the additional virtualization overhead.

5.2 Alternative Inference Methods

It has been shown by Titsias [76] that selecting more data points as inducing points
would never decrease the ELBO . Intuitively, larger training datasets may benefit
more from a higher limit of inducing points. However, further increasing the number of
inducing points can result in prohibitive runtime and memory requirements, particularly
for real-time applications on mobile computing platforms. In this subsection, we explore
alternative inference methods that could (1) either scale more effectively with a larger
number of inducing points; or (2) make more efficient use of the limited inducing points.

8Excluding the SM kernel, which requires noticeably longer runtime and memory, trading increased
computational cost for potentially greater expressiveness—though we did not observe any practical benefit.
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5.2.1 Local Kernel Interpolation

We consider the local kernel interpolation (LKI) method [93] which has O(1)-time
cached mean prediction, insensitive to the number of inducing points.

Specifically, assuming that the m inducing points Z form a grid, then the Nystrom
approximation [89] could be further approximated by

K~KxzK L Kzx ~ W' KzzW (5.2.1)

where W € R™*™ is a sparse interpolation matrix such that Kzz;W =~ Kzx. Therefore,
we could approximate the GP correction (3.1.4]) by

output(x*) = fo(x*) + Wi K7z W(W T Kz + 021~ Hy — fy(X) (5.2.2)

LKI Correction

where wy+- € R™ is a sparse interpolation vector such that Kyzwy+ = kzx+. The term
KzzWWTKzzW +021)~ Yy — fp(X)) can be cached, allowing the LKI-based correction
to be computed in O(1)-time (since wx+ is sparse), unlike the SVGP correction in equation
which requires O(m)-time computation.

Despite the computational benefits with a larger number of inducing points, the LKI
approach comes with additional overhead during the interpolation step (to compute wy-),
which could be observed from the empirical comparisons in Figure [2] and Figure Fur-
thermore, the grid structure of inducing points is prone to the curse of dimensionality,
since the number of inducing points required to densely cover the input space increases
exponentially with the input’s dimensionality. In high-dimensional settings, this exponen-
tial growth can substantially raise memory requirements. Therefore, DKL [92] or additive
kernels [23] are usually employed when using LKI.

Moreover, the LKI approach requires all data to be contained in a pre-specified grid
where the inducing points are distributed. In the GPyTorch [28] implementation, the data
is scaled to fit within the grid’s bounds using the following method:

X — Xmin

ScaleToBound(x) = o (¢, — ¢;) - +o /4 (5.2.3)

Xmax — Xmin

element-wise division

where £y, £, € R are the lower and upper bounds of the grid [¢y, £,]”, o € (0,1) is a scaling
factor to ensure numerical stability for interpolation, and Xmin, Xmax € RL are vectors
where each element represents the smallest (resp. largest) observed value of the input data
in the corresponding dimension.

When training in mini-batch, the kernel approximation in equation may be
unnecessary. Instead, we can adopt the hybrid strategy described in Section where we
optimize the hyperparameters for an exact GP over subsampled data during training, then
employ the approximated correction with the optimized hyperparameters during
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inference. However, if we are using the ScaleToBound(-) method in with DKL, then
we need to recompute Xpi, and xXmax after each gradient update, which would incur an
O(n) computational costﬂ To facilitate the use of subsampling during training, we would
like to have a ScaleToBound(-) method that is insensitive to changes in data embeddings.
Consequently, we consider the following data-independent ScaleToBound(-) method

ScaleToBound(x) = o tanh(x) (5.2.4)

which maps all data into a fixed grid [—o, a]D . When combined with DKL, this can be
regarded as an activation in the final layer of the MLP feature extractor, ensuring that the
transformed features remain within the fixed grid.

We evaluated our implementation of the LKI-based correction (5.2.2)) on the Swimmer
task. In this setting, all variants of GP-TD-MPC employing the variational conditioning
strategy (described in Section failed to outperform the baseline. To address the curse
of dimensionality, we employed DKL together with the ScaleToBound(-) method in ([5.2.4))
to map all input data into fixed 2-dimensional grids for each independent GP, and we used
m = 1502 = 2.25 x 10* inducing points, which exceed the total number of data points.
Only the variant using the SM kernel outperformed the baseline during the first half of
the experiment and delivered comparable performance overall. However, unlike previous
observations, using the SM kernel with LKI did not incur substantial memory or runtime
requirements. This is because the sparse interpolation allows LKI-based correction to only
access O(1) entries of the cached vector. The results are presented in Figure
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Figure 11: Comparison of performance and total runtime in the Swimmer-v5 environment.

Remark. We have observed that our implementation of the LKI-based correction is not
deterministic, leading to variations in results across different trials, even with the same

9Notice that the latent embeddings of the dataset would change after each update.
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random seed. We hypothesize that this is due to GPyTorch’s implementation of SKI
relying on operations that lack deterministic alternatives.

5.2.2 Dynamical Local Projection

Based on the intuition that MPC locally optimizes the trajectory, inducing points
closer to the initial trajectory are likely to be more informative. For example, Hewing
et al. [37] propose dynamically selecting inducing points at each sampling time based on
their proximity to the optimized trajectory from the previous timestep. However, they
employ a low-rank kernel approximation strategy called the Fully Independent Training
Condition (FITC) [58], which may be considered less favorable compared to SVGPs [5].
Consequently, we would like to similarly select inducing points for variational conditioning.

Instead of re-computing the variational conditioning in O(nm?) time at each timestep,
We consider utilizing pre-computed ¢ and C' from equation (3.2.4]) with a large set of
inducing points Z of size M, then project them to a subset of inducing points Z’ C Z of
size m that are closer to the reference trajectory p in O(M?m) time, which is independent
of the size of the dataset. We will refer to this method as dynamical local projection (DLP).

DLP is inspired by online variational conditioning (OVC) [47]. Specifically, we have

< =KyxS,'y ~ Kz 7(Kzjc)

, " . . (5.2.5)

C'= KZ/XEy KXZ/ ~ KZ’Z(KZZCKZZ)KZZ’
where Kgéc € RM and K géCK 2} € RMXM are cached. We may subsequently use ¢’ and
C’ to compute the optimal variational distribution by equation .

The parameter projection could be interpreted by the Nystrom approxima-
tion (see Appendix . In particular, we would like to find an efficient approxi-
mation (i.e., without requiring the access to the full dataset) of the projection matrix
P=Kzx(KxzKzx)TKxyz such that ¢’ = Pc and C’' = PC’PT If we use the Nystrom
approximation Kz x =~ KZ/ZKEEKZX, then it is easy to see that

P=Kyx(KxzKzx)"Kxz

~ Kz2K 5K px(Kseri7s) Kxz (5.2.6)

_ —1
= KZ/ZKZZ

by properties of the pseudo inverse of products, assuming that Kzx has full row rank.
For the selection of Z’ C Z, we consider the top-m candidates of Z based on the
following heuristic cost function (lower is better)

cost(z,p) = hﬂmir}lq_1 n"*dist(z, PrPri1) (5.2.7)

10We consider the pseudo inverse (KxzKzx)" since KxzKzx is a low-rank matrix.
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where p is the reference path (which we choose to be the optimized trajectory of the
previous timestep). The term P,ppy1 represents the line segment connecting the h-th and
(h+1)-th points in the reference path p, and n € (0, 1) is a temporal discount factor which
encourages more points to be selected near line segments corresponding to larger timesteps.
A visualized example is presented in Figure

We conducted an empirical comparison of three inference methods—standard varia-
tional conditioning, LKI, and DLP—on the Pendulum-v1 environment. The results, shown
in Figure [I3] were obtained with hyperparameters m = 128, M = 2048, and n = 0.8. While
DLP achieved faster convergence than the TD-MPC baseline similar to other variants of
GP-TD-MPC, it performed worst among all other variants in this experiment. Notably,
however, DLP incurred significantly lower computational overhead compared to LKI.

5.3 Potential Extensions

In this subsection, we discuss several approaches to further enhance the efficiency of
GP-TD-MPC, which we leave the exploration to future work.

5.3.1 Inducing Point Allocation

The inducing point allocation (IPA) methods that we use, FPS [25] (kernel-independent)
and pivoted Cholesky decomposition [34] (kernel-dependent yet target-independent), share
a common limitation: neither fully exploits the joint information in the dataset (X,y) to
optimize inducing point allocation. This is particularly suboptimal in our setting, where
the GP model serves as a correction to the MLP base model. Ideally, inducing points
should be allocated (whilst maintaining diversity) to regions where predictions of the MLP
base model fy deviate significantly from the ground-truth outputs, as these regions likely
require stronger GP correction.

One possible approach is to sample from a determinantal point process (DPP, see
Appendix [B.4)) over the dataset {(x1,y1),. .., (Xn,yn)} similar to a recent work on IPA for
Bayesian optimization (BO) [50]. For example, consider an “importance” function related
to the MLP model residuals

9(x,y) = a([lfo(x) — yl)) (5.3.1)

where o : R>g — Ry is monotonically increasing (e.g., a(x) = = + € for ¢ > 0). Notice
that the importance function g(-, ) assigns higher values to data pairs for which the MLP
base model produces inaccurate predictions. Correspondingly, we may define the following
augmented kernel function

kppp((X1,91), (X2,92)) = 9(x1, y1)k(x1,X2)g(X2, y2) (5.3.2)

which is clearly symmetric and positive semi-definite. Intuitively, the sample from the
DDP w.r.t. the augmented kernel function kppp defined in (5.3.2)) should balance between
diversity (captured by the GP’s kernel k) and the importance (captured by g).
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lSoelection of Low Discrepancy Points Closest to the Trajectory
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Figure 12: Selection of 128 points from 1024 Sobol points that are closest to the reference
trajectory according to the heuristic in . A temporal discount factor of n = 0.8
encourages more points to be selected near line segments corresponding to larger timesteps,
where the trajectory is expected to exhibit greater variation during the MPC optimization.
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Figure 13: Comparison of performance and total runtime in the Pendulum-v1 environment.

31



5.3.2 Uncertainty Quantification

The ability of uncertainty quantification has been shown to mitigate the issue of the
dynamics bottleneck in MBRL [15] [39, 83| [84]. However, Theorem [I| indicates that the
dynamics gap for a short planning horizon (H = 5) is substantially smaller than for longer
horizons (20 < H < 40, as in [83]). This reduced gap suggests that a deterministic
model may suffice in practice, aligning with the empirical success of TD-MPC [33], which
achieves strong performance without explicit stochastic modeling. Furthermore, we should
note that the IPA strategy we mentioned in Section may not be easily compatible with
uncertainty quantification: When the inducing points are concentrated in regions where
the base model exhibits poor performance, the resulting sparse coverage of the inducing
points in other regions could undesirably inflate predictive variances, even if those areas
are where the model’s predictions are most reliable. Nevertheless, the ability of uncertainty
quantification may still be an advantage for guiding exploration [19] [70] or learning in the
low-data regime [20], which could be offline or require fewer inducing points.

It is important to note that both the SVGP and LKI approaches used in this report allow
for constant-time posterior prediction and/or sampling [55, [94], [95]. For example, pathwise
conditioning [94] 95] allows efficient sampling of functions from the posterior by combining
scalable GP inference methods such as SVGP with Fourier features (see Appendix .
Specifically, pathwise conditioning decomposes the GP posterior as a weight-space prior
and a function-space update (or “correction”) as follows

(flu(x) =~ o(x")'w +kieK, (u—dw) (5.3.3)
— ~~
weight-space prior function-space update

where ¢(-) : RP — R® is the feature map associated with the kernel (potentially, approx-
imated by Fourier features [59]) with s < n being the feature dimension, w ~ N(0, L)
is sampled from the prior weight distribution, u ~ AN (my, Sy) is sampled from the varia-
tional distribution in O(m?) time, and ® = ¢(Z) € R™** is the feature map evaluated at
the m inducing points Z. Therefore, the uncertainty of pathwise conditioning for SVGP
is mainly introduced by the weight-space prior N'(0,1I;), and controlled by the variational
distribution N (my, Sy). Each evaluation of the sampled function takes O(s + m) time
after pre-computation.

We can easily integrate pathwise conditioning within our GP-TD-MPC framework as
the inference is also based on SVGP correction

(flu)(x") = fo(x*) + d(x*) "W+ ke K, L (1 — dw). (5.3.4)

function prior correction term

This comes with several advantages for model-based planning compared to other scalable
GP posterior sampling methods (e.g., LOVE [55]): (1) the function draw is differentiable,
which admits gradient-based method (e.g., [36]) other than CEM and MPPI; (2) combining
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multiple function draws could be interpreted as an ensemble of models, which admits a
more flexible choice of trajectory sampling schemes (e.g., TS-1 and TS-co in PE-TS [15]).

5.3.3 Kernel Composition

As discussed in Section the Matérn kernel may be more suitable for modeling
contact dynamics. In general, we argue that the choice of the kernel could significantly
affect the performance of GP-TD-MPC. Consequently, we may want to explore a wider class
of kernels and analyze how their covariance structure can be tailored to benefit specific
applications of GP-TD-MPC. By composing kernels through addition or multiplication,
we may encode prior knowledge about structural properties (e.g., linearity and periodicity)
into the model, enhancing its predictive capability [24].

However, the pathwise conditioning method [94, [95] for uncertainty-aware modeling
relies on an (approximate) finite-dimensional weight-space representation. Typically, this
involves Fourier feature approximations [59], which are limited to stationary kernels. This
undesirably restricts the use of composite kernels such as those involving linear kernels.
Fortunately, we can integrate the Fourier feature approximation of stationary kernels with
other non-stationary kernels that have finite-dimensional feature maps (e.g., the linear
kernel) into a unified representation. For instance, given two kernels ki(-,-) and kao(,-)
with finite-dimensional feature maps ¢1(-) and ¢2(-), the corresponding feature maps of
the additive and multiplicative kernels could be attained by concatenation (@.qq(z) =

[61(2), @a(a)]) or tensor product (¢ (x) = é1(x) ® do(x)) respectively.

6 Conclusion

This report demonstrates that scalable GPs could be effectively integrated with model-
based online planning frameworks such as TD-MPC to further enhance sample efficiency
while maintaining real-time tractability in environments of moderate dimensionality. By
employing GPs as corrective models to MLP base models, our method could attain perfor-
mance comparable to or exceeding the TD-MPC baseline in the majority of tasks. More-
over, we have observed the superiority of Matérn kernels in modeling contact dynamics
and the computational advantages of DKL (e.g., in the HalfCheetah-v5 environment).

Directions for future works may include adaptive inducing point allocation (e.g., dynam-
ical local projection and DDP-based methods), uncertainty-aware modeling (e.g., via path-
wise conditioning), and kernel selection tailored to domain-specific applications. These po-
tential advancements would position GP-based MBRL as a versatile and efficient paradigm
for real-time planning in diverse environments.
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RBF Matérn-3/2 Spectral Mixture
Task Name  TD-MPC
Standard DKL Standard DKL Standard DKL
Pendulum 175.13 260.31 266.87 279.64 297.81 430.92 287.64
Reacher 127.96 172.53 173.18 173.31 174.48 856.31 182.29
Pusher 201.40 305.83 293.66 315.20 302.04 — —
Swimmer
(m < 256) 1049.06 1531.21 1603.92 1537.10 1635.02 - -
Swimmer
(m < 1024) 1049.06 1592.99 1603.02 1666.68 1732.88 - -
Half Cheetah 1064.46 2019.56 1631.59 2794.53 2818.31 — —

Table 1: Comparison of total runtime (in seconds) averaged across 5 trials.
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Appendices

A Theoretical Discussions on TD-MPC

A.1 Wasserstein Distance

For TD-MPC, all models are implemented using deterministic MLPs [33], in contrast
to previous works that employ probabilistic models to mitigate the dynamics bottleneck
dilemma (i.e., the relatively poor asymptotic performance compared to methods that are
model-free or based on the ground-truth dynamics) [15, 39, [83] 84]. We argue that the total
variation distance commonly employed in the analysis of MBRL methods (e.g., [39, 66l [84])
is not an appropriate choice for measuring the error of a deterministic model relative to
the stochastic ground-truth dynamics.

The total variation distance [79] between two probability measures p and ¢ on a mea-
surable space (2, F) is defined by

Drv(pllg) = Sup. Ip(A) — q(A)[ € [0,1] (A.1.1)

which implies Dy (p|l¢) = 1 when p and ¢ have disjoint supports, regardless of how far
the supports are from each other [3]. Furthermore, if p satisfies p (2 \ {24}) =1 (e.g., a
Gaussian measure) and ¢ = §,, is deterministic at z, (i.e., a Dirac measure), we also have

Dyv(pllq) = sup [p(A) — q(A)| = 1. (A.1.2)
AeF

Therefore, instead of using the total variation distance, we consider the Kantorovich-
Rubinstein dual form of the Wasserstein distance, defined by

W(p,q) = S Eznplg(2)] = Eanglg(2)] (A.1.3)

where ||g||z is the Lipschitz constant of a function g [80]. Then, the dynamics model error
w.r.t. the Wasserstein distance could be defined by

~

€m = max W(M(-|s,a), M(-|s,a)). (A.1.4)

s,a

In contrast to the observation in (A.1.2), the Wasserstein distance enables the compar-
ison of deterministic models with stochastic ground-truth dynamics, making it potentially
suitable for the performance analysis of TD-MPC. For example, we have

W(p,a) = Exnplllz = 2l2] (A.L5)

if ¢ = 6., is a Dirac measure [80].
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A.2 H-step Model-based Value Error

Let M = (S, A, M,r, pg) be the original MDP and 7 be a deterministic policy. Let Q™
denote the ground-truth action-value function of 7 evaluated in M. Suppose we have a
learned dynamics model M, a learned reward model 7, and a learned action-value function
Q™, we would like to consider two H-step finite horizon MDPs H = (S, A, p, rmix, po) and
H = (S, A, M, i, po) (ie., the “simulated” MDP) where

Tmix (8¢, ay) = {T(ft’at) (t i ) and  Pmix(st, ar) = {Ti(:t’at) (t f ) (A.2.1)
Q" (s, a) (t=H) Q" (st,a1) (t=H)

We are interested in the model-based value error |[V™(s) — V7(s)|, where the value
functions V™ (s) and V“(S) represent the expected performance of policy 7 (starting at the
initial state s) evaluated in H and H respectively. Intuitively, this error is related to the
dynamics bottleneck dilemma for MBRL [83],[84]. When this performance gap is large, the
algorithm tends to select suboptimal action sequences even with a perfect optimizer for
the MPC objective, causing the algorithm’s performance to plateau at a level lower than
their model-free counterparts or themselves with ground-truth dynamics.

Intuitively, this performance gap should relate to the following model errors

€m = max, , W(M(:|s,a), M(-|s,a)) (dynamics model error)
€ = Max,q |7(s,a) — 7(s,a)] (reward error) (A.2.2)
€, = Max, . |Q"(s,a) — Q7 (s, a)| (Q-function error)

since the two MDPs H and H are identical when €m = € = €4 = 0.

Lemma A.1. Given the two MDPs H, H and the policy w aforementioned, we have

N v — 7H+1 _~H
Vi) = VT ()| < [VT|lp————€em + &+ e, (A.2.3)
1—7 11—
dynamics gap return estimation gap

for any state s € S.

Proof. We follow the steps of Xiao et al. [96] with minor modifications. For 0 < h < H+1,
define Uy, to be the H-step value expansion that, starting at the given state s, rolls out
the approximate model (M , Tmix) first for h — 1 steps and then rolls out the ground-true
model (M, rpyix) for the remaining H — h + 1 steps:

h—1 H
Un =3 1By, ey (s ms)] + 3 0'E,, pr oprolrmic(sem(s))] (A2.4)
t=0 t=h
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where P7(-) (resp. P7(-)) denotes the state visitation probability at timestep ¢ w.r.t. the
ground-truth dynamics M (resp. the learned dynamics model M) and a given policy .
Furthermore, P, o Pf(-) = E_, | p}?(.)[Pgr_ 1 (:1s")] denotes the state visitation probability

after rolling out h steps with M and then ¢ — h steps with M, where P7(-|s") denotes the
corresponding state visitation probability given that the roll out starts from state s’.
By some rearrangements, we have

Uh—zfy ([Pt T 7By ey [r(sn w(s))]

+ 7h+1Esh+1NP% prey [V (sn41)] (A.2.5)

Unty1 = Z’Y s ([P (s, m(s ))]‘FV}LHES}LHNP}?H(‘) V7 (sh41)] (A.2.6)

for h < H.
Therefore, for h < H, we can bound U, — Uy by

VHE,, orpope) [V (sne) = By ) V7 (s000)])

h+1
+ ’YhEshNP;:(.)[T(Sha 7(sn)) — 7(sn, 7(sn))]
h+1 e T
<yt BnBr() [Esh+1~M(~\sm(sh)) WV (sna)] =B, onit(spm(an [V (5h+1)]}
+’Yh€7"
<Vl AR, gy W Clshm(on)), MCCLsn, w(s1))| +7"er
ol P S (A.2.7)
from equations (|A.2.5) and (A.2.6). Moreover, for h = H, we have
Uy — U1 =77 (ESHNPE(.)[Q”(SH,W(SH))] —E,, pr(. [Q (SHaﬂ'(SH))])
<He,. (A.2.8)

By definition, V7 (s) = U and V7 (s) = Up1, hence

H
N 1 —~H
VR(s) = P70 = S0~ V) < VLT et g e, (A29)
h=0 7 N
By symmetry, we have
T Orm 0 ’7 7 1- /VH H
VTi(s) = VT ()| < |IV™L — em + T €+ 7€ (A.2.10)
which concludes the proof. O
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Notice that the RHS of Lemma is dependent on the policy m, which could be
arbitrary. We would like to further relax this RHS to obtain a policy-independent bound.

This is achieved by making several assumptions, particularly on the Lipschitz continuity,
about the original MDP M = (S, A, M, r, pg) and the policy class II.

Assumption 1 (Bounded Value Function). Suppose there exists a constant Vijax < oo
such that |V7™(s)| < Viax for all s € S and 7 € I1.

Assumption 2 (Lipschitz Continuity). The reward function r is L g-Lipschitz continuous,
and any deterministic policy w € Il is L;-Lipschitz continuous. Furthermore, the stochastic
dynamics M is Lps-Lipschitz continuous in the sense that

Dry(M(-|s1,a1), M(-|s2,a2)) < La||(s1,a1) — (s2,a2)|2 (2.2.6)
for all s1,s2 € S and ay,as € A, where Dpy/(-,-) denotes the total variation distance [79).

Assumptions regarding Lipschitz continuity are common in theoretical analyses of
model-based reinforcement learning (e.g., [19, [70]). However, for the stochastic ground-
truth dynamics M, we specifically control the changes in the output distribution using the
total variation distance. We should also notice that

1
Dy (M (-|s1,a1), M(+|s2,a2)) = 2/ |M(s'|s1,a1) — M (s'[s2, az)|ds’ (A.2.11)

for all s1,s2 € S and aj,as € A from Scheffé’s theorem [79].

Remark. We made a slight abuse of notation in (A.2.11)) by using M(-|s,a) to represent
both the probability measure (on the LHS) and the probability density function (on the
RHS) associated with the stochastic dynamics M conditioned on s and a.

To demonstrate that Assumption [2] makes sense, we provide a concrete example.

Example 1. Consider a GP on S x A with the RBF kernel and noise € ~ N(0, 02), which
should have L,,-Lipschitz continuous predictive mean m(-) and L,2-Lipschitz continuous
predictive variance o2(-) [19, 44]. Let p; = m(si, a;) and o; = o(s;,a;) for i = 1,2, we have

3lof — o3| | |p1 — pol
20% 201

DTV(N(IU'LU%)?N(M%U%)) <

3lof — o3| | |p1 — pal

< A.2.12
ST g ( )
_ 3Ly + 0l
- 202

[(s1,a1) — (s2,a2)]|2

for all s1,s2 € S and aj,as € A. The first inequality is from Theorem 1.3 in [22].
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Lemma A.2. Let X,Y be Euclidean spaces and (Z,d) be a metric space. Given that
f:XxY = Z is Ly-Lipschitz continuous and g : X — Y is Lgy-Lipschitz continuous,

h:X — Z defined by h(x) = f(x, g(x)) must be (Lf, /14 Lg) -Lipschitz continuous.
Proof. For any x1,x2, we have
d(f(z1,9(x1)), f (22, 9(22))) < Lyll(21, 9(21)) — (22, 9(22)) ]2

= Lyy/la1 — zal3 + la(e1) — g(a2) 3

5 5 (A.2.13)
< Lyyfler = w03 + L2llar — 223
= <Lf\/@) ||£Cl — l‘2||2
which concludes the proof. O

Lemma A.3. For an MDP M satisfying Assumption[]] and Assumption[3, we have
IV llz < (LR + 2yVimaxLa)y/1 + L2 (A.2.14)

for any given w € II.

Proof. By the Bellman equation, we have
V™(5) = 1(5,7(5)) + 1Eymonr( oo V() (A2.15)
for all s € §, which implies
(V7 (s1) = V7(s2)]
< [r(s1,m(s1)) = 7(s2, (82)) | + VBt (s m(s0)) [V (8)] = Earons (s m(sa)) [V ()]

< Lpy/1+ L2|s1 — soll2 +7 / (M(s']s1,7m(s1)) — M(s'|s2,7(s2))) V™ (s")ds'
S/

< Lpy/1+ L2||s1 — so|2 +7/ |M(s'|s1,m(s1)) — M(s'|s2, m(s2))| - [V (s)|ds’

< Lpy/1+ L2|s1 — so|2 +7VmaX/ |M(s|s1,m(s1)) — M(s|s2,m(s2))|ds’

= Lr/1+ L2|[s1 = s2l2 + 29 Vinax Drv (M (-] 51, 7(51)), M (] 52, 7(s2)))

< Lpyv/1+ L%”Sl - 82||2 + 2vVimax L/ 1 + L72T||81 — 52||2

< (Lg + 2vVinaxLar)V/1 4 L2||s1 — 22 (A.2.16)
for all s1,s9 € S. Therefore, we have

IV lL < (L +27yVmaxLum) /1 + L2 (A.2.17)

which concludes the proof. O
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Theorem [I] summarizes the above discussions.

Theorem 1 (H-step Model-based Value Error). Given a policy m € II. Suppose M is
a (deterministic) dynamics model such that maxs, W (M(-|s,a), M(-|s,a)) < €, 7 is an
approximate reward model such that maxs q |r(s,a)—7(s,a)| < €, and QT is an approzimate
action-value function such that max, . |Q™(s,a) —Q7 (s, a)| < ¢,. Let V™ denote the ground-
truth value function and V™ denote the model-based value estimation

H—
V”(s) = E%pr(.‘s) [Z Y (se, ar) + ’}/HQ(SH, ap) (2.2.7)
where T = (s0,7(s),...,sm,m(sm)) is a trajectory sampled by M and 7 starting at the

initial state so = s (i.e., T ~ P™(:|s)), then there is a constant factor Kxq such that

1_H

VT(s) — V’T(s)‘ Ky T . j’Y €m + 1 _77 &+ e, (2.2.8)
dynamics gap return est;:nation gap

for any initial state s € S, where Kpq satisfies Ky < (Lg + 27Viax L)/ 1+ L2.

A.3 Compounding Error Phenomenon

Given a deterministic policy = and an initial state sp, we are interested in bounding
W (PF(-|s0), ]5}}(-\50)), i.e. the Wasserstein distance between the ground-truth dynamics
M and the learned model M after H -step rollouts.

The approximate dynamics M which we compare with the ground-truth M is a single
deterministic model, i.e., a special case of the class of dynamics models induced by Lipschitz
model classes introduced by Asadi et al. [3]. However, we consider our policy 7 to be a
deterministic function instead of being determined by a fixed action sequence.

Assumption 3. The learned dynamics Mis L yr-Lipschitz continuous.

Lemma A.4. Given a deterministic policy m € 11, we have

W (PF(-]s0), Pir(-|s0)) <emZ( VITI2) (A3.1)

for any initial state so € S and step length h € N.

Proof. We follow the steps of Asadi et al. [3]. The base case when h = 1 is trivial. For the
inductive step, we assume that

h—1

W (P (o), B Clso)) < em > (L /T+ L2 L%r)t. (A.3.2)

t=0
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By the triangle inequality, W (P, (+|so), ]5,3:+1(~|50)) is bounded by
W (BT (c]s0), PT o Pif(-]s0)) + W (P o Pff(-|s0), Bl 1 (-]s0))- (A.3.3)
For the first term, we have

W (B (-1s0), PT o Pyf(-]s0))

- Hfs||up< Eshﬂwpﬁrﬂ( |So)[f(5h+1)] o ESh+1N15fr°P;f('|so)[f(Sthl)]
L

= Hfsnqus"NPW( 150) Easp M (lsnm(sn)) [F (Sha )] =By vr (s (s L (Sn2)]]
L

< Esprpcion) | S0 EoppiettClonaanp I (one0)] =By, g, aan [ (o]

< Esh~P;L“(-\so) [W(M(|7 Sh W(Sh))v M("Sha W(Sh))]
<éem (A.3.4)

For the second term, we use Lemma and the induction hypothesis,
W (P o P (-|s0), Bty (-]s0))
= HEEILIES,LNPW( 1so) LF (M (s, (51))] — Esthﬁr(.Bo)[f(M(Sh,W(Sh))]
<Ly \/1+7L2 W (BF (10), Pff(-]s0))
< em Z ( 1+ L2) (A.3.5)

Therefore, combining the results of (A.3.4]) and (A.3.5)), we have

W (P, 1(:50), Ph+1( 50)) < em + EWZ < m)

<em Z ( 11 L2) (A.3.6)

which completes the proof by mathematical induction. ]

We obtain a corollary, which is also a special case of Theorem 1 in Asadi et al. [3].

Corollary A.5. Given a policy m determined by a fized action sequence, we have

W(PT (1s0), B (130)) < en > (L)' (A3.7)

for any initial state so € S and step length h € N.
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B Scalable Gaussian Process Regression

B.1 More on the Mathematical Formulations

In Section 2.3} we have briefly introduced the function-space view of GPs. Alternatively,
we could also interpret GP as kernel Bayesian linear regression (i.e., the weight-space
view) [61]. Let ¢(-) be the feature map corresponding to the kernel function k(-,-) (i.e.,
k(x1,%x2) = (¢(x1), ¢(x2))), and consider the linear model y = ¢(x)"w + ¢. If the prior of
w is p(w) ~ N(0,1), then the posterior of w becomes

1 _ -
plov | Xoy) ¢ ply | X whpton) o exp (5w = w) A = w)) (B.1.1)
where A = 072¢(X)p(X) " +T and w = 0. 2A71¢(X)y. Hence, the predictive distribution

p(f(X") [ X,y,x") = /p(f(x*) | X", wp(w | X, y) dw (B.1.2)

is equivalent to (2.3.1)) by direct computation [61].

Remark. For the weight-space view, the feature map corresponding to a kernel matrix
does not necessarily map data points to a finite-dimensional space as assumed above. We
take this assumption for an easier illustration of the underlying intuition.

The information gain for the GP model with inputs X most commonly refers to the
mutual information [I8] between observations y and values of f on X respectively, i.e.

1 - 1 R
IG(y; f) = 510g|1+ o, 2KXX| = ilog |Kxx| —nlogoe (B.1.3)

which reflects the model complexity that appeared in the training objective : lower
information gains indicate less detailed accounts of observations y x in predictions f, mean-
ing the model is simpler, and vice versa. In the context of reinforcement learning, the no-
tion of this information gain could be used to design intrinsic rewards to guide optimistic
exploration of the unknown environment [70].

Another information gain of interest in the context of continual learning is the mutual
information between the new data point (x*,y*) and the current model [64, [71]. For
Gaussian process models, we consider its weight-space view

IG((x",y");p(w | X,y)) = DxrL(p(w | X, y, x*,4") | p(w| X,y))
=Ep(w| xyxy) [logp(y™ [ w,x")] — logp(y* | X, y,x)
<logEpw | xy.xy) [Py [ W, x7)] —log p(y* | X, y,x")
=logp(y™ | X, y, X", y") |y =y —logp(y" | X,y,x")  (B.1.4)

learnability surprise

which has an upper bound in the closed form [71].
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B.2 Kernel Approximation Methods
Referring to equations ([2.3.1] , (2.3.5 ), and , the training and inference of GPs

involve computing the matrlx solves K Xy and Ky Xk xx*, the determinant term |K xx|,

and the trace term tr (K X& 8[;;9( A ), which are the main computational bottlenecks.

In general, by finding a low-rank approximation of the n x n kernel matrix Kxx, we
could apply the Woodbury identity to approximate R’)_é( = (K)}ﬁ( +02T)~ 1 in O(n?s) time,
where s < n is the rank of the approximation. Furthermore, it only takes O(ns?) time
for matrix solves by arranging the order of computations. In this subsection, we briefly
overview some common low-rank kernel approximation methods for GPs, including Fourier
features (e.g., random Fourier features [59]) and Nystrom approximation [89], as well as
structured kernel interpolation (SKI) [93].

B.2.1 Fourier Features

The stationary kernels rnentloned in Section [2.3] admit Fourier feature approximations
by Bochner’s theorem 3) [59L 62]. More spemﬁcally, s independent samples of {w;}{
from the spectral density p(w) and {b;}{_; from Unif([0, 27]) can be used to approximate
the kernel function via

k(x,y) = Eu[€w(x1)&0(x2)*] =~ — Z\/icos w;' X+ b;) - V2 cos(w;' y + bi). (B.2.1)

Let z(x) = %(ﬂcos(wfx +b1),...,v2cos(w x + bs))" € R®, we can approximate
the kernel matrix Kxx ~ Z)T(ZX where Zx = [z(x1);...;2(x,)]" € RSX" This approx-
imation has rank at most s. Furthermore, we could interpret this approximation from the

weight-space view, considering z(-) as an “approximation” of the feature map ¢(-). In this
case, the posterior distribution (B.1.1)) of the weight w € R* should be

p(w|X,y) =N(o>A " Zxy, A) (B.2.2)

where A = O';ZZXZ)—E—FI € R*%. To sample from the posterior, it takes O(s?n) to compute
A, O(s?) time to compute the Cholesky decomposition of A, and O(s%n) to compute A~ Zx
from the Cholesky decomposition Notice that the sampled posterior function w'z(-) is
deterministic and only takes O(s) time for evaluation.

" The embedding %(\/5 cos(wy x), v2sin(w! x),..., ﬁcos(wz—mx), \/5sin(c/.);'—/gx))—r could be used as an
alternative. In fact, the latter always produces lower variances for approximating the RBF kernel [72], and
is used in the GPyTorch implementation of RFF kernels [28].

2Furthermore, posterior sampling from equation could be computed efficiently via contour in-
tegral quadrature (CIQ) [56] in O(Jns) time (typically, J < 100 is the number of iterations). CIQ is an
MVM-based method, which is amenable to GPU acceleration.
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However, RFF approximations suffer from variance starvation, producing unreliable
confidence bounds [52], [85]. Mutny et al. propose the quadratic Fourier feature (QFF) [52],
which takes the perspective of numerical integration instead of Monte Carlo approximation.
Generally, they use the quadrature rule, essentially a weighted sum of function evaluations
(known as integration points). Different integration points and corresponding weights could
be selected by applying different quadrature rules, such as the Gauss-Hermite quadrature
(in QFF), the Gauss-Legendre quadrature [65], and the trigonometric quadrature [45].
If we restrict to the 1-D scenario, these deterministic Fourier feature methods require
significantly fewer feature dimensions to attain acceptable approximations compared to
the RFF approach, and are less prone to variance starvation; However, to extend them to
higher dimensions, a Cartesian product grid is required, which grows exponentially with
the number of dimensions D [45], 52] 65]. Consequently, certain measures need to be taken
to amend the CoD (e.g., Mutny et al. propose to use generalized additive models [52]).

Alternatively, Avron et al. [4] propose to use quasi-Monte Carlo (QMC) estimation to
replace the Monte Carlo estimation in the original approach of RFF [59]. Although QMC
obtains a convergence rate of O((logs)”/s) which also suffers the curse of dimensionality,
it has been empirically shown that QMC still out-performs MC even in high-dimensional
settings [4]. Intuitively, quasi-uniform sampling tends to avoid the undesired clustering.

B.2.2 Nystrom Approximation

The Nystrom approximation, also referred to as the subset of regressors (SoR), is also
a common technique for low-rank kernel matrix approximation [89]. Specifically, partition
the kernel matrix Kxx into block matrices K, s € R**% K s = KJ_&S € RSX(”’S), and
Ky_sn—s € R(M=9)%(n=5) a5 follows

Ks s Ks,nfs

)

Kxx = (B.2.3)
Kn—s,s Kn—s,n—s

then a rank-s approximation of Kxx is obtained by
Kxx ~ Kn K, Kon (B.2.4)

in O(ns?) timeifl7 where K, s = [K; ¢ Ky—ss] € R"™® and K, = KTIS € R%*", The
benefit of this approach is that it is data-dependent, hence it is considered theoretically
and empirically better in certain scenarios compared to the Fourier features approach [97].

The intuition behind the Nystrom approximation could be understood from the pro-
jection perspective [51]. Let S € R™*® be a one-hot matrix such that each column has a
single non-zero entry equals 1 so that KxxS = K, s and STKxxS = K s. Recall that

13The Cholesky decomposition of K s requires O(s®) time, which is negligible when s < n.
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Kxx = ¢(X) T ¢(X) where ¢(X) € R™*" is the feature embedding of the data set (assume
m < oo is the feature dimension). We consider the projection of the feature embedding
»(X) to the column space of ¢(X)S € R™*® which is the feature embedding of a subset
of the dataset. The corresponding projection matrix P is given by

P = ¢(X)S(S"6(X) (X)S)"'S T H(X) " e R™™ (B.2.5)

which indeed satisfies P? = P and is symmetric (i.e., PT = P). Consider the projection
P¢(X) € R™ " as an approximation of the feature embedding ¢(X), then we obtain an
approximation of the kernel matrix
Kxx = ¢(X) " ¢(X)
~ ¢(X) PTPy(X)
= ¢(X) H(X)S(STH(X) $(X)S) 'S (X)) " H(X)
= Kn,sKs_,les,n-

(B.2.6)

Remark. The partition in we consider in the Nystrom approximation could be arbi-
trary. Intuitively, a “good” approximation should ensure that the space spanned by the pro-
jected feature vectors col(¢(X)S) is of the highest dimensionality (up to dim(col(¢(X))).
To achieve this, the subset of points used to construct K s, which are known as the land-
mark points, should be distributed as evenly as possible [I1].

The structured kernel interpolation (SKI) [93] is an extension of the Nystrom approxi-
mation, which enables an efficient full-rank approximation by leveraging a structured set of
inducing points (or landmark points for Nystrém approximation). Specifically, SKI uses a
structured grid (e.g., Toeplitz or Kronecker) as inducing points to form Kj s, and builds an
O(n)-sparse matrix W € R™*® via cubic interpolation [40] so that K, ; & WK, ;. Plugging
them into equation , we have

Kxx ~ Kn K, Ko = WK, KK W =WEK, W = Kggg (B.2.7)

where it is possible to have s > n, making the approximate GP more likely to maintain
exact performance. However, the efficiency of matrix-vector multiplications (MVM) with
Kgkr is significant, requiring at most O(n + slogs) time. This efficiency arises from the
structured nature of K ¢ and the sparsity of W, which enable fast approximations of kernel
matrix solves using black-box MVM methods such as conjugate gradients. As a result,
SKI facilitates scalable training while maintaining computational feasibility. Furthermore,
the SKI-based approach allows for constant-time mean and variance predictions during
inference through Lanczos decomposition and caching [55].

However, a key limitation of SKI—similar to deterministic Fourier feature approaches
[45, 52}, 65]—is its restriction to low-dimensional problems (typically, D < 5) due to ex-
ponentially growing memory requirements [93]. Common strategies to mitigate this issue
include additive kernels [23], product kernels (SKIP) [29], or deep kernel learning.
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B.3 Variational Bayesian Methods

Other than directly approximating the kernel matrix Kxx, an alternative approach
is to use variational Bayesian methods to approximate the GP posterior. Specifically, let
f = f(X) be the prior conditioned on X where f ~ GP(0,k(-,-)), and consider m inducing
points Z € X with u = f(Z). Replacing the conditional prior p(u) with the variational dis-
tribution ¢(u), we could approximate the augmented conditional prior p(f,u) = p(f | u)p(u)
by q(f,u) = p(f |u)g(u) [76], which allows us to derive the evidence lower bound (ELBO)

of the MLL in equation (2.3.5)

log p(y) = log Ep ¢ u) (¥ | )]
fip(f,u

et )

)p(f

)

p(y [ f)p(f, u)
—_ B.3.1

q(f,u (B31)

py[f p(u
— By [log 2L
pEta)g(u)
= Eq(ew[logp(y | £)] — Dxw(g(w)[[p(w)).

Remark. For simplicity, we have slightly abused notation by omitting the conditioning on

X and 6 in this subsection. In other words, whenever we write expressions such as p(y),
we actually mean the likelihood p(y | X, #), unless otherwise mentioned.

Z Eq(f,u) |:10g

Notice that we could usually obtain the factorization logp(y | f) = log [\, p(y: | £i) =
Yo logp(yi| i), so that the ELBO admits stochastic gradients during training.
However, under certain conditions (e.g., ¢(u) = N (my, Syu) is a free Gaussian distribution),
there is a closed-form optimal variational distribution that maximizes the ELBO using the
calculus of variations and Lagrange multipliers. This allows the variational conditioning
strategy used by Maddox et al. [47].

Lemma B.1. The optimal variational distribution q(u) that mazimizes the ELBO

f)p(u
Eq(t,u) [log p(yql(l)s?( )] (B.3.2)

satisfies

4(u) ox exp ( [ pte 1) togty | f>df) p(u). (B.3:3)

Proof. Consider the functional

Slal = Eq(t ) [10g Zj(y‘f)mu)} — o (/q(u)du - 1>

q(u)

— /Q(u) [/p(f | u) log p(y | f)p(u)df} du+ H(q) —no (/ g(u)du — 1) (B.3.4)
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where 7 is the Lagrange multiplier that ensures the second axiom of probability. We know
that S[g] attains an extremum when the functional derivative is equal to zero, i.e.

o = [ 9(8 1) ox(ply | D)) + (~loza(u) ~ 1) =0 B35

which implies that

p(E ] w) log(p(y | £)p(u )df—l—no>

X exp

—ow(f
x exp </p £ ) log p(y | £)df + log p(u )) (B.3.6)
(/

p(t ) log y 1 ) pla)
which concludes the proof. O

Corollary B.2. Assuming that we have a Gaussian likelihood p(y |f) = N(f,021) and
the variational distribution q(u) = N (my, Su) is Gaussian with free parameters (my, Sy),
then the optimal variational distribution w.r.t. the dataset (X,y) satisfy

my=Kyz;(Kzz +C) e, Sau=Kzz(Kzz+C) 'Kyy (B.3.7)
where
c=Kzx3,'yeR",  C=Kzx%,'Kxz e R™™ (B.3.8)
where ¥y, = oL
Proof. From the Matheron’s rule [1], p(f|u) = N(KXZKgéu, Kxx — KXZKEEKZX).
Furthermore, from p(y | f) = N(f, 021), we have

/ p(E | ) log p(y | £)df

— L Elly - £2|u] + 0(1)

202
1
= 5,2 (E[f"f|u] — 2E[f [u] "y + ¥¥) + O(1)
1
= 5z (Var(flu) + E[f | u] "E[f |u] — 2E[f |u] "y) + O(1)
1
= 02 (Tr(KX 7 EZKZX) + uTKgészszKgéu — 2uTK§%KZXy) + O(l)

1
—§uTK§éCK§éu +u' K c+0(1).
(B.3.9)
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By completing the square, we may verify that

() o exp ( [ pie1wtognty, f>df> plu)

1
X exp —iuTKZZC’KZZu—i-uTKZZC 3 TKE}u)

(B.3.10)
} T —1 T —1
X exp 2 KZZ Kzz—l—C) Kzz] u-+u KZZC
1 T
X exp iu—mu Syt (u—my)
where Sy = Kzz(Kzz + C) ' K7z and my = Squéc =Kzz(Kzz +C) 7 lc. O

Corollary demonstrates that variational conditioning can be computed in O(nm?)
time and O(nm) space, which is comparable to the complexity of solving low-rank kernel
approximations. Moreover, the inference of SVGP only requires O(m) time for mean pre-
diction and O(m?) time for variance prediction after pre-computation, which is independent
of the size of the dataset. Specifically, we have

E[f(x")| 2, x"] = E[E[f(x") | Z,x", u]]
= E[ka*KZZu] (B.3.11)

_ 1
= kZX*KZZInU
and

Var[f(x*) | Z,x*] = E[Var[f(x*) | Z,x*,u]] + Var[E[f(x") | Z,x", u]]

[ (
= k(x*,x") — ke K, LKz + Var(k . K, Ll (B3.12)
= k(x*,x*) =~ K K Kz + Ko K L SuK Lk e o
= k(x*,x") — k) K, 1 (K77 — Su) K, ;K zx+

B.4 Determinantal Point Processes

In this subsection, we briefly describe the determinantal point processes (DPP) for
inducing point selection. We first consider the so-called L-ensemble representation of a
DPP Py, on X [7]. Let Y € 2% be a random draw according to P, such that

where the normalizing factor is |Kxx + I| = Y yeax |Kyy|. Recall equation 1j the
determinant ]Kyy] is related to the mutual information between the observations and the
GP posterior evaluated at Y. Notice that in the GP training objective (2.3.5), models
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with smaller information gains are preferred, which could be interpreted as an automatic
Occam’s Razor in Bayesian modeling [60]. However, for IPA, we would like to choose a
subset of data points that correspond to high information gains.

Furthermore, let T' = (K xx + I)_lf( xx (consider it as a “normalized” kernel matrix),
for every subset A C X, we have

P(ACY) =|Taal (B.4.2)

One observation from equation (B.4.2) is that, for A = {x1,x2}, let S € {0,1}?*" be the
one-hot matrix such that Taq = STS" and Kaq = SKxxS', then

P(x1,%2 € Y) = [S||(Kxx +I) " Kxx||S"| o< [SKxxS"| = |Kaal (B.4.3)

which implies that

k(x1,%1) + 0?2 k(x1,x2)

P(x1,x2 €Y) x
, (B.4.4)
]{I(Xl,Xg) k‘(Xg,Xg) + o;

= (k(x1,x1) + 02)(k(x2,%X2) + 02) — k(x1,%x32)>.

That is to say, more correlated points tend to be less likely to co-occur in a sample from
the DDP. Similarly, if we extend to scenarios with heteroscedastic noises, then data points
associated with random noises of higher variances are more likely to be contained in the
sample Y. In other words, DDP models the diversity of subsamples [42].

However, sampling from a DDP (which samples a subset of an undetermined size)
requires the eigendecomposition of the kernel matrix Kxx in O(n?) time where n is the
size of the dataset, which is typically intractable [38]. Kulesza et al. [42] propose the
kE-DDP approach which attempts to reduce computation by conditioning on |Y| = k.
However, only the subsequent sampling steps are reduced to O(nk?) time, and the O(n?)
eigendecomposition remains the computational bottleneck. Alternatively, Burt et al. [10]
suggest approximating the mazimum a posteriori (MAP) estimate of a k-DDP, which could
be greedily obtained in O(nk?) time [14].

o7



	Introduction
	Background
	Methods
	Results
	Discussion
	Conclusion
	Appendices
	Theoretical Discussions on TD-MPC
	Scalable Gaussian Process Regression

