
Efficient Gaussian Processes for Model-based Online Planning

Hu Hanyang
Supervisor: Jonathan Scarlett

Department of Mathematics
National University of Singapore

Mathematics Capstone Project for Semester 2, AY2024/2025

April 15, 2025

Hu Hanyang Efficient GPs for Model-based Planning April 15, 2025 1 / 40



Outline

1 Introduction

2 Backgrounds

3 Methods

4 Results

5 Potential Extensions

6 Conclusion

Hu Hanyang Efficient GPs for Model-based Planning April 15, 2025 2 / 40



Introduction

In model-free reinforcement learning, 1 million time-steps is common
for training, which might be infeasible for real-world applications.

Model-based reinforcement learning (MBRL), particularly online
planning, may converge much earlier than 200k time-steps.1

Question: Can we make MBRL more sample-efficient by replacing the
common MLP dynamics model with Gaussian processes (GPs)?

Challenges of GP dynamics for online planning:

computational complexity (i.e., slow training and inference)

curse of dimensionality (CoD)

1Tingwu Wang et al. Benchmarking Model-Based Reinforcement Learning. 2019.
url: https://arxiv.org/abs/1907.02057.
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Existing Works on GP-based Planning

Results in the PE-TS2 paper:

2Kurtland Chua et al. Deep Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models. 2018.
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Existing Works on GP-based Planning

Examples focusing on GP-based Planning:

1 (Hewing et al., 2020) Propagating uncertainty by first-order
approximations (similar to extended Kalman filters) and selecting
inducing points dynamically.

2 (Bosch et al., 2020) Using a neural network auto-encoder to alleviate
the CoD, GP dynamics then plan in the latent space.

Note. These methods are typically tested only in simple environments.
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Motivation

Overarching Goal: Extend GP-based planning to more diverse domains
while maintaining real-time performance and advantage over NN models.
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Markov Decision Processes

A Markov decision process (MDP) is defined by M = (S,A,M, r , ρ0)

state space S
action space A
transition probability distribution (dynamics) st+1 ∼ M(·|st , at)
reward function r : S ×A → R
initial state distribution s0 ∼ ρ0(·)

Source: OpenAI Spinning Up (spinningup.openai.com).
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Markov Decision Processes

Goal: Find a (deterministic) policy function π : S → A such that

π∗ = argmax
π

Eτ∼Pπ(·)[R(τ)]

where R(·) denotes the infinite-horizon discounted return

R(τ) =
∞∑
t=0

γtr(st , at)

with discount factor γ ∈ (0, 1).

Question: How to maximize this objective when we only have a set of
sampled trajectories with finite length collected from a non-optimal policy?
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Bellman Equation

Consider the action-value function Q : S ×A → R

Qπ(s, a) = Eτ∼Pπ(·)

[ ∞∑
t=0

γtr(st , at)
∣∣ s0 = s, a0 = a

]

which satisfies the Bellman equation

Qπ(s, a) = r(s, a) + γ · Es′∼M(·|s,a)[Q
π(s ′, π(s ′))].

The optimal action-value function Q∗ should satisfy

Q∗(s, a) = r(s, a) + γ · Es′∼M(·|s,a)[max
a∈A

Q∗(s ′, a))]

and hence the optimal policy can be extracted by π∗(s) = maxa Q
∗(s, a).
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Deep Deterministic Policy Gradient

(1) Given a policy π, we can train a Q-network Qθ by minimizing

L(θ,D) = E(st ,at ,st+1,rt)∼D[(Qθ(st , at)− (rt + γQθ(st+1, π(st+1)))︸ ︷︷ ︸
temporal-difference (TD) target

)2]

so that Qθ approximates Qπ (referred to as TD learning).

(2) Find the policy network πθ(s) ≈ argmaxa Q
π(s, a) by maximizing

Es∼D[Qθtarg(s, πθ(s))]

where θtarg is a lagged target Q-network introduced to stabilize training.

The deterministic policy gradient theorem (Silver et al., 2014) states
that this is approximately the same as the original objective of the MDP.
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Model-based Online Planning

Intuition: RL is difficult, regression is easy.

With a learned dynamics model Mθ and reward model Rθ, the optimal
action can be selected by model predictive control (MPC)

πMPC(st) = argmax
at

max
at+1:t+H

E

[
H∑
i=0

γ iRθ(st+i , at+i )

]
.
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Model-based Online Planning

Time Complexity: O(JNH) model inference steps. J is the number of
iterations, N is the population size, and H is the planning horizon.
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TD Learning for MPC (TD-MPC)

Intuition: Use TD learning to model global optimality and use MPC to
refine local behaviors, requiring a shorter planning horizon H.

Modified MPC Objective:

πTD-MPC(st) = argmax
at

max
at+1:t+H

E

[
H−1∑
i=0

γ iRθ(st+i , at+i ) + γHQθ(sH , aH)

]
.

Note. All components of TD-MPC are implemented using deterministic
neural networks.
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Model-based Value Error of TD-MPC

Motivation: The model-based value error partially determines the
performance of model-based online planning.

Theorem (modified and extended from Xiao et al., Theorem 1)

The model-based value error is bounded by∣∣∣V π(s)− V̂ π(s)
∣∣∣ ≤ KM

γ − γH+1

1− γ
ϵm︸ ︷︷ ︸

dynamics gap

+
1− γH

1− γ
ϵr + γHϵq︸ ︷︷ ︸

return estimation gap

and KM ≤ (LR + 2γVmaxLM)
√

1 + L2π.

Notations:

1 Dynamics Model Error maxs,a W (M(·|s, a), M̂(·|s, a)) ≤ ϵm;

2 Reward Model Error maxs,a |r(s, a)− r̂(s, a)| ≤ ϵr ;

3 Value Function Error maxs,a |Qπ(s, a)− Q̂π(s, a)| ≤ ϵq.
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Overview

Key Design Choices:

1 Integration with TD-MPC.

2 GP-based Correction of MLPs.

3 Decoupled Training and Inference.

4 Integration with Deep Kernel Learning (DKL).

Note. We would refer to our method as GP-TD-MPC.
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GP-based Correction

Instead of standalone GPs, we use an MLP model fθ(·) as the prior mean

output(x∗) = fθ(x
∗) + k⊤Xx∗K̂

−1
XX (y − fθ(X ))︸ ︷︷ ︸

GP correction

and the GP training target becomes the residual y − fθ(X ).
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Computational Bottlenecks

Training a GP model involves maximizing the marginal log-likelihood
(MLL) w.r.t. the kernel hyperparameters θ (e.g., the lengthscales)

L = log p(y |X , θ) ∝ − (y −m(X ))⊤K̂−1
XX (y −m(X ))︸ ︷︷ ︸

model fit

− log |K̂XX |︸ ︷︷ ︸
complexity

which is computation-heavy.

Cached inference of the GP correction

output(x∗) = fθ(x
∗) + k⊤Xx∗K̂

−1
XX (y − fθ(X ))︸ ︷︷ ︸

GP correction

takes O(n) time for each independent GP (n is the size of the data).

Hu Hanyang Efficient GPs for Model-based Planning April 15, 2025 19 / 40



Stochastic Variational Gaussian Process (SVGP)

Evidence Lower Bound (ELBO): Using a variational distribution
q(u) ∼ N (mu, Su) w.r.t. m inducing points Z to approximate
p(f,u) = p(f |u)p(u) ≈ p(f |u)q(u) so that

log p(y|X , θ) ≥ Eq(u)p(f|u)[log p(y|f)]− DKL(q(u)∥p(u))

where p(y|f) =
∏n

i=1 p(yi |fi ) usually factorizes over data instances.

The inference can also be approximated by

E[f (x∗) |X , y, x∗] ≈ k⊤Zx∗K
−1
ZZmu

Var[f (x∗) |X , y, x∗] ≈ k(x∗, x∗)− k⊤Zx∗K
−1
ZZ (KZZ − Su)K

−1
ZZ kZx∗

where the mean prediction only takes O(m) time.

Note. We consider m ≡ 0 for simplicity.
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Decoupled Training and Inference

Motivation: The SVGP training introduces O(m2) additional parameters,
which we might want to avoid to reduce training time.

Training: Subsample a mini-batch of data for scalable training.3

Inference: Choose Z by farthest point sampling or pivoted Cholesky,
then obtain the optimal variational distribution in O(nm2) time

c = KZXΣ
−1
y (y − fθ(X )), C = KZXΣ

−1
y KXZ

mu = KZZ (KZZ + C )−1c, Su = KZZ (KZZ + C )−1KZZ .

3Shifan Zhao et al. Efficient Two-Stage Gaussian Process Regression Via Automatic
Kernel Search and Subsampling. 2024.
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Deep Kernel Learning

In non-stationary and/or high-dimensional settings, we may introduce a
neural network feature extractor as kernel hyperparameters, known as
deep kernel learning (DKL).
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Overview
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Successful Cases

Certain variants of GP-TD-MPC outperformed the baseline:
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Failed Cases

For the Swimmer task, only GP-TD-MPC with the Matérn kernel and
DKL delivered comparable performance in the end.

Hu Hanyang Efficient GPs for Model-based Planning April 15, 2025 26 / 40



Key Findings

From the experimental results, we derive the following observations:

1 GP-TD-MPC with DKL typically requires fewer inducing points to
achieve the error tolerance for the pivoted Cholesky method.

2 GP-TD-MPC with the Matérn-3/2 kernel consistently matches or
even outperforms the TD-MPC baseline.
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Number of Inducing Points

The pivoted Cholesky method selects up to m inducing points and may
terminate early if the truncation error falls below the specified tolerance.

For m ≤ 256, only DKL variants reached the default tolerance.
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Modeling Contact Dynamics

The spectral densities of the RBF kernel and the Matérn kernel are

pRBFl (s) = (2πl2)D/2 exp
(
−2π2l2s2

)
pMatérn
l ,ν (s) =

2DπD/2Γ(ν + D/2)(2ν)ν

Γ(ν)l2ν

(
2ν

l2
+ 4π2s2

)−(ν+D/2)

resembling the Gaussian distribution and the t-distribution.
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Toy Example: Trajectory of a Bouncing Ball
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Runtime and Efficiency
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Alternative Inference Methods

Motivation: For high-dimensional tasks that require a larger amount of
data, more inducing points might be required. However, this may slow
down inference. Instead, we consider alternative inference methods.

1 Local Kernel Interpolation. O(1)-time inference, scaling more
effectively with a larger number of inducing points;

2 Dynamical Local Projection. Making more efficient use of the
limited inducing points.
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Local Kernel Interpolation

Use cubic interpolation to obtain sparse matrix W s.t. WKXX ≈ KXZ

and hence KXX ≈ KXZK
−1
ZZ KZX ≈ W⊤KZZW .

At any test location x∗, compute the sparse interpolation vector wx∗ s.t.
KZZwx∗ ≈ kZx∗ , we can approximate the original GP correction by

output(x∗) = fθ(x
∗) +w⊤

x∗KZZW (W⊤KZZW + σ2
ϵ I)

−1(y − fθ(X ))︸ ︷︷ ︸
LKI Correction

.
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Dynamical Local Projection

Inspired by online variational conditioning (OVC)4 and dynamic
sparse GPs for MPC5.

4Wesley J. Maddox, Samuel Stanton, and Andrew Gordon Wilson. Conditioning
Sparse Variational Gaussian Processes for Online Decision-making. 2021.

5Lukas Hewing, Juraj Kabzan, and Melanie N. Zeilinger. “Cautious Model Predictive
Control Using Gaussian Process Regression”. In: (2020).
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Dynamical Local Projection

Given a set of M inducing points Z , we compute the corresponding c and
C , they can thus be projected to a subset Z ′ ⊆ Z of size m by

c′ = KZ ′XΣ
−1
y y ≈ KZ ′Z (K

−1
ZZ c),

C ′ = KZ ′XΣ
−1
y KXZ ′ ≈ KZ ′Z (K

−1
ZZ CK

−1
ZZ )KZZ ′ .

to compute the optimal variational distribution w.r.t. Z ′. Each time, DLP
takes O(M2m) time, independent of the dataset size.

Let p be the reference path, we can select Z ′ according to

cost(z,p) = min
h=1,...,H−1

ηhdist(z,phph+1)

which encourages more points to be selected near line segments
corresponding to larger timesteps.
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Dynamical Local Projection
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Dynamical Local Projection
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Future Work

We recommend some directions for future explorations:

1 More informative inducing point allocation (IPA).6

2 Uncertainty quantification using pathwise conditioning.7

3 Kernel composition for domain-specific applications.

6Henry B. Moss, Sebastian W. Ober, and Victor Picheny. Inducing Point Allocation
for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation. 2023.

7James T. Wilson et al. Pathwise Conditioning of Gaussian Processes. 2021.
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