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Introduction

In model-free reinforcement learning, 1 million time-steps is common
for training, which might be infeasible for real-world applications.

Model-based reinforcement learning (MBRL), particularly online
planning, may converge much earlier than 200k time-steps.®

Tingwu Wang et al. Benchmarking Model-Based Reinforcement Learning. 2019.
URL: https://arxiv.org/abs/1907.02057.
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Introduction

In model-free reinforcement learning, 1 million time-steps is common
for training, which might be infeasible for real-world applications.

Model-based reinforcement learning (MBRL), particularly online
planning, may converge much earlier than 200k time-steps.®

Question: Can we make MBRL more sample-efficient by replacing the
common MLP dynamics model with Gaussian processes (GPs)?

Challenges of GP dynamics for online planning:
@ computational complexity (i.e., slow training and inference)

e curse of dimensionality (CoD)

Tingwu Wang et al. Benchmarking Model-Based Reinforcement Learning. 2019.
URL: https://arxiv.org/abs/1907.02057.
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Existing Works on GP-based Planning

Results in the PE-TS? paper:
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2Kurtland Chua et al. Deep Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models. 2018.
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Existing Works on GP-based Planning

Examples focusing on GP-based Planning;:

@ (Hewing et al., 2020) Propagating uncertainty by first-order
approximations (similar to extended Kalman filters) and selecting
inducing points dynamically.

@ (Bosch et al., 2020) Using a neural network auto-encoder to alleviate
the CoD, GP dynamics then plan in the latent space.

&
Z

Note. These methods are typically tested only in simple environments.
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Overarching Goal: Extend GP-based planning to more diverse domains
while maintaining real-time performance and advantage over NN models.
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Markov Decision Processes

A Markov decision process (MDP) is defined by M = (S, A, M, r, po)
@ state space S

action space A

transition probability distribution (dynamics) s¢11 ~ M(:|st, at)

reward function r : S x A - R

initial state distribution sp ~ po(+)

State, Reward
S, T

Action
ay

Environment

Source: OpenAl Spinning Up (spinningup.openai.com).
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Markov Decision Processes

Goal: Find a (deterministic) policy function 7 : S — A such that

7" = argmaxE,._pr()[R(7)]

where R(-) denotes the infinite-horizon discounted return

R(r) = Z Yr(st, ar)
t=0

with discount factor v € (0,1).
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Markov Decision Processes

Goal: Find a (deterministic) policy function 7 : S — A such that

7" = argmaxE,._pr()[R(7)]

where R(-) denotes the infinite-horizon discounted return
R(r) = Z’ytr(st, ar)
t=0

with discount factor v € (0,1).

Question: How to maximize this objective when we only have a set of
sampled trajectories with finite length collected from a non-optimal policy?
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Bellman Equation

Consider the action-value function Q@ : S x A - R

Q"(s,a) = E,wpr(,) [Z Yir(se,ae) | so =s,a0 = a]

t=0

which satisfies the Bellman equation

QW(S7 a) = r(57 a) +- IE5’~M(~|s,a)[Q7T(S,7 7I-(S,))]'
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Bellman Equation

Consider the action-value function Q@ : S x A - R

Q"(s,a) = E,wpr(,) [Z Yir(se,ae) | so =s,a0 = a]

t=0

which satisfies the Bellman equation

QW(S7 a) = r(57 a) +- IE5’~M(~|s,a)[Q7T(S,7 7I-(S,))]'

The optimal action-value function Q* should satisfy
Q*(S, a) = F(S, 3) + IEs’~/VI(~\s,a) [Tea}‘( Q*(slv a))]

and hence the optimal policy can be extracted by 7*(s) = max, Q*(s, a).
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Deep Deterministic Policy Gradient

(1) Given a policy 7, we can train a Q-network Qg by minimizing

L(8, D) = E(sa0,50:1,r)~0l(Qa(st, ar) — (re + 7Qp(St+1, 7(5t11))))’]

temporal-difference (TD) target

so that Qp approximates Q™ (referred to as TD learning).

(2) Find the policy network 7y(s) ~ arg max, Q™ (s, a) by maximizing
EsND[Qgtarg(s7 7.‘-6(5))]

where 0O;arg is a lagged target Q-network introduced to stabilize training.

The deterministic policy gradient theorem (Silver et al., 2014) states
that this is approximately the same as the original objective of the MDP.
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Model-based Online Planning

Intuition: RL is difficult, regression is easy.

With a learned dynamics model My and reward model Ry, the optimal
action can be selected by model predictive control (MPC)

mmpc(s:) = argmax max E
ar Atl:it+H

H .
Z 7' R0(5t+i7 3t+i)] .

i=0
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Model-based Online Planning

Algorithm 1 Model Predictive Control (MIPPC)

1: Input: Number of iterations .JJ, population size N, number of elite samples K, roll-
out horizon H, initial distribution parameters p”, 3%, (learned) dynamics model My,
(learned) reward model Ry, current state s;.

2. for each iteration i = 1,2,...,.J do

3 Sample N action sequences of length H from N (p7 =1, %971),

4: for all N sequences I' = (a¢, at+1, - .., 0e+1) do

5: for step j =0,1,...,H -1 do > Estimate trajectory return ¢p
6: Update ¢r = ¢r + v Ro(st44, at+j)- > Initially setting ¢p = 0
7 Predict sp4 41 ~ Mp(Si4j, Qrj)-

8: end for

9: end for

10: Select the elite samples {T';}{* | corresponding to the top-K returns {or; HE L

11: Update parameters 7, a7 for the next iteration based on {I';}£, and {;ép:}fc":P
12: end for

13: Output: (af,af;1,...,a5, ) ~N(p', 27)

Time Complexity: O(JNH) model inference steps. J is the number of
iterations, N is the population size, and H is the planning horizon.
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TD Learning for MPC (TD-MPC)

Intuition: Use TD learning to model global optimality and use MPC to
refine local behaviors, requiring a shorter planning horizon H.

Modified MPC Objective:

H-1
' H
mrD-Mpc(St) = argmax _max E E Y ' Ro(st+isae+i) +7" Qo(sH, an)
ar At+1:t+H prs

Note. All components of TD-MPC are implemented using deterministic
neural networks.
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Model-based Value Error of TD-MPC

Motivation: The model-based value error partially determines the
performance of model-based online planning.

Theorem (modified and extended from Xiao et al., Theorem 1)

The model-based value error is bounded by

R _ ~H+1 1— H
VR(9) = V7(s)] < K2t e e
dynan:ircs gap return est‘?;ation gap

and Ky < (LR I 27VmaxLM)\/1 + L72T.

Notations:
© Dynamics Model Error max, , W(M(|s, a), M(-|s, a)) < em;
@ Reward Model Error maxs , |r(s,a) — 7(s, a)| < €
@ Value Function Error max; , |Q"(s,a) — Q7 (s, a)| < €.
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Overview

Key Design Choices:
© Integration with TD-MPC.
@ GP-based Correction of MLPs.
© Decoupled Training and Inference.
© Integration with Deep Kernel Learning (DKL).

Note. We would refer to our method as GP-TD-MPC.
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GP-based Correction

Instead of standalone GPs, we use an MLP model fy(-) as the prior mean

output(x*) = f(x*) + k- Kxx( — f(X))

~
GP correction

and the GP training target becomes the residual y — fy(X).

Performance Comparison (Pendulum-v1) Inducing Points Comparison (Pendulum-v1)
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Computational Bottlenecks

Training a GP model involves maximizing the marginal log-likelihood
(MLL) w.r.t. the kernel hyperparameters 6 (e.g., the lengthscales)

L =logp(y| X,0) o< — (y — m(X)) " Kxx(y — m(X)) — log |Kxx|
N—_——
model fit complexity

which is computation-heavy.
Cached inference of the GP correction

output(x”) = fy(x") + kix Kyx (y — (X))

GP correction

takes O(n) time for each independent GP (n is the size of the data).
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Stochastic Variational Gaussian Process (SVGP)

Evidence Lower Bound (ELBO): Using a variational distribution
q(u) ~ N(my, S,) w.r.t. m inducing points Z to approximate
p(f,u) = p(f|u)p(u) =~ p(f | u)g(u) so that

log p(y[X,0) > Eqqu)p(fiullog p(YIF)] — Dki(q(u)||p(u))

where p(y|f) = 17 p(yi|fi) usually factorizes over data instances.
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Stochastic Variational Gaussian Process (SVGP)

Evidence Lower Bound (ELBO): Using a variational distribution
q(u) ~ N(my, S,) w.r.t. m inducing points Z to approximate

p(f,u) = p(f|u)p(u) =~ p(f | u)g(u) so that

log p(y| X, 0) = Eq(u)p(fu[log p(yIF)] — Dki(q(u)|[p(u))
where p(y|f) = 17 p(yi|fi) usually factorizes over data instances.
The inference can also be approximated by

E[f(x*) | X,y,x"] & k7 K77 my,
Var[f(x*) | X, y,x*] & k(x*,x*) — k 2y K72 (Kzz — Su) K73k zx-

where the mean prediction only takes O(m) time.

Note. We consider m = 0 for simplicity.

Hu Hanyang Efficient GPs for Model-based Planning April 15, 2025 20 / 40



Decoupled Training and Inference

Motivation: The SVGP training introduces O(m?) additional parameters,
which we might want to avoid to reduce training time.

Training: Subsample a mini-batch of data for scalable training.3

10% Data 50% Data 80% Data 100% Data

3Shifan Zhao et al. Efficient Two-Stage Gaussian Process Regression Via Automatic
Kernel Search and Subsampling. 2024.
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Decoupled Training and Inference

Motivation: The SVGP training introduces O(m?) additional parameters,
which we might want to avoid to reduce training time.

Training: Subsample a mini-batch of data for scalable training.3

10% Data 50% Data 80% Data 100% Data

Inference: Choose Z by farthest point sampling or pivoted Cholesky,
then obtain the optimal variational distribution in O(nm?) time

c=KzxI, H(y — (X)),  C=KzxE, Kxz
m, = Kzz(Kzz + C) ¢, Su= Kzz(Kzz + C) " 'Kzz.

3Shifan Zhao et al. Efficient Two-Stage Gaussian Process Regression Via Automatic
Kernel Search and Subsampling. 2024.
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Deep Kernel Learning

In non-stationary and/or high-dimensional settings, we may introduce a

neural network feature extractor as kernel hyperparameters, known as
deep kernel learning (DKL).

Hu Hanyang
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Overview

.‘/< ---------- . .

(a) Pendulum ) 2-DOF Reacher ) 7-DOF Pusher

R ]

(d) Swimmer (e) Half Cheetah
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Successful Cases

Certain variants of GP-TD-MPC outperformed the baseline:

Performance Comparison (Pendulum-v1) Performance Comparison (HalfCheetah-v5)
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Failed Cases

For the Swimmer task, only GP-TD-MPC with the Matérn kernel and
DKL delivered comparable performance in the end.

Total Reward

80

60

40

20

Performance Comparison (Swimmer-v5)

5000 10000 15000 20000 25000 30000
Timesteps
—e— TD-MPC  —=— GP-TD-MPC (RBF) ~ —=— GP-TD-MPC (Matérn-3/2)

Hu Hanyang
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Inducing Points Comparison (Swimmer-v5)
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Key Findings

From the experimental results, we derive the following observations:
@ GP-TD-MPC with DKL typically requires fewer inducing points to
achieve the error tolerance for the pivoted Cholesky method.

@ GP-TD-MPC with the Matérn-3/2 kernel consistently matches or
even outperforms the TD-MPC baseline.

Hu Hanyang Efficient GPs for Model-based Planning April 15, 2025 27 /



Number of Inducing Points

The pivoted Cholesky method selects up to m inducing points and may
terminate early if the truncation error falls below the specified tolerance.

For m < 256, only DKL variants reached the default tolerance.

Performance Comparison (Pendulum-v1) Inducing Points Comparison (Pendulum-v1)
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Modeling Contact Dynamics

The spectral densities of the RBF kernel and the Matérn kernel are
pRBF(s) = (27 1?)P/? exp (—2772I252)

Matérn 2P7P2T (v + D/2)(2v) 2.2 ~(v+D/2)
Py (s) = ()12 I2 iy

resembling the Gaussian distribution and the t-distribution.

Standard Normal vs. Student-t Distributions

0.40 —— Normal (0,1)

—— Student+t, df=3
—— Student-t, df=5
— Student-t, df=10
—— Student-t, df=20
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Toy Example: Trajectory of a Bouncing Ball

Modeling the 2D Trajectory of a Bouncing Ball
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Runtime and Efficiency

RBF Matérn-3/2 Spectral Mixture
Task Name TD-MPC

Standard DKL Standard DKL  Standard DKL

Pendulum 175.13 260.31 266.87 279.64 297.81 430.92  287.64

Reacher 127.96 172.53 173.18 173.31 174.48 856.31 182.29
Pusher 201.40 305.83 293.66 315.20 302.04 - -
Swimmer
(m < 256) 1049.06 1531.21 1603.92 1537.10  1635.02 - -
Swimmer

(m < 1024) 1049.06 1592.99  1603.02  1666.68  1732.88 - -

Half Cheetah  1064.46 2019.56  1631.59  2794.53  2818.31 - -

Table 1: Comparison of total runtime (in seconds) averaged across 5 trials.
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© Potential Extensions

Hu Hanyang Efficient GPs for Model-based Planning April 15, 2025 32 / 40



Alternative Inference Methods

Motivation: For high-dimensional tasks that require a larger amount of
data, more inducing points might be required. However, this may slow
down inference. Instead, we consider alternative inference methods.
O Local Kernel Interpolation. O(1)-time inference, scaling more
effectively with a larger number of inducing points;
@ Dynamical Local Projection. Making more efficient use of the
limited inducing points.
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Local Kernel Interpolation

Use cubic interpolation to obtain sparse matrix W s.t. WKxx ~ Kxz
and hence Kxx ~ KxzK53 Kzx = WTKzzW.

At any test location x*, compute the sparse interpolation vector wy+ s.t.
Kzzwy+ == kzyx«, we can approximate the original GP correction by

output(x*) = f(x*) + w KzzW(W T Kzz W + a21) Yy — f(X)).

LKI Correction

Performance Comparison (Swimmer-vs) Runtime Comparison (Swimmer-vs)
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Dynamical Local Projection

Inspired by online variational conditioning (OVC)* and dynamic
sparse GPs for MPC>.

Ty T1

*Wesley J. Maddox, Samuel Stanton, and Andrew Gordon Wilson. Conditioning
Sparse Variational Gaussian Processes for Online Decision-making. 2021.

5Lukas Hewing, Juraj Kabzan, and Melanie N. Zeilinger. “Cautious Model Predictive
Control Using Gaussian Process Regression”. In: (2020).
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Dynamical Local Projection

Given a set of M inducing points Z, we compute the corresponding ¢ and
C, they can thus be projected to a subset Z’ C Z of size m by

c = KZ’XZ;]-y ~ KZ’Z(KZ_ZIC)7
CI = KZ’nglKXZ’ ~ KZ’Z(KZ_ZICKZ_ZI)KZZ"

to compute the optimal variational distribution w.r.t. Z’. Each time, DLP
takes O(M?m) time, independent of the dataset size.

Hu Hanyang Efficient GPs for Model-based Planning April 15, 2025 36 / 40



Dynamical Local Projection

Given a set of M inducing points Z, we compute the corresponding ¢ and
C, they can thus be projected to a subset Z’ C Z of size m by

c = KZ’ngly ~ KZ’Z(KZ_ZIC)7
CI = KZ’XZJIKXZ’ ~ KZ’Z(KZ_ZICKZ_ZI)KZZ"

to compute the optimal variational distribution w.r.t. Z’. Each time, DLP
takes O(M?m) time, independent of the dataset size.

Let p be the reference path, we can select Z’ according to

COSt(Z7 p) = h:lmir;-lfl nhdiSt(Za phph+1)

which encourages more points to be selected near line segments
corresponding to larger timesteps.
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Dynamical Local Projection

lSoelecztion of Low Discrepancy Points Closest to the Trajectory

Low Discrepancy Points
—e— Trajectory
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Dynamical Local Projection

Performance Comparison (Pendulum-v1) Runtime Comparison (Pendulum-v1)
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Future Work

We recommend some directions for future explorations:
@ More informative inducing point allocation (IPA).°
@ Uncertainty quantification using pathwise conditioning.’
© Kernel composition for domain-specific applications.

True
---- objective
function
Noisy
observations
Inducing
B points
Posterior
mean
95%
confidence
interval

X

-1.00 -0.75 -0.50 —025 0.00 0.25 0.50 0.75 1.00
X

5Henry B. Moss, Sebastian W. Ober, and Victor Picheny. Inducing Point Allocation
for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation. 2023.
"James T. Wilson et al. Pathwise Conditioning of Gaussian Processes. 2021.
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