Efficient Gaussian Processes for Model-based Online Planning

Hu Hanyang Supervisor: Jonathan Scarlett

Department of Mathematics National University of Singapore Mathematics Capstone Project for Semester 2, AY2024/2025

April 15, 2025

Outline

- Introduction
- 2 Backgrounds
- Methods
- Results
- 5 Potential Extensions
- 6 Conclusion

Introduction

In **model-free reinforcement learning**, 1 million time-steps is common for training, which might be infeasible for real-world applications.

Model-based reinforcement learning (MBRL), particularly online planning, may converge much earlier than 200k time-steps.¹

¹Tingwu Wang et al. *Benchmarking Model-Based Reinforcement Learning*. 2019. URL: https://arxiv.org/abs/1907.02057.

Introduction

In **model-free reinforcement learning**, 1 million time-steps is common for training, which might be infeasible for real-world applications.

Model-based reinforcement learning (MBRL), particularly online planning, may converge much earlier than 200k time-steps.¹

Question: Can we make MBRL more **sample-efficient** by replacing the common MLP dynamics model with **Gaussian processes (GPs)**?

Challenges of GP dynamics for online planning:

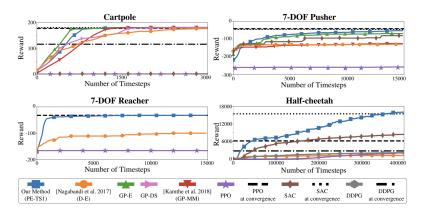
- computational complexity (i.e., slow training and inference)
- curse of dimensionality (CoD)

3 / 40

¹Tingwu Wang et al. *Benchmarking Model-Based Reinforcement Learning*. 2019. URL: https://arxiv.org/abs/1907.02057.

Existing Works on GP-based Planning

Results in the PE-TS² paper:

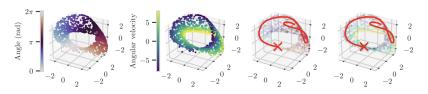


²Kurtland Chua et al. Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models. 2018.

Existing Works on GP-based Planning

Examples focusing on GP-based Planning:

- (Hewing et al., 2020) Propagating uncertainty by first-order approximations (similar to extended Kalman filters) and selecting inducing points dynamically.
- (Bosch et al., 2020) Using a neural network auto-encoder to alleviate the CoD, GP dynamics then plan in the latent space.



Note. These methods are typically tested only in simple environments.

Motivation

Overarching Goal: Extend GP-based planning to more diverse domains while maintaining real-time performance and advantage over NN models.

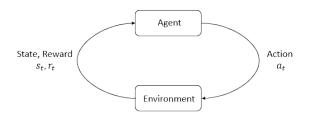
Outline

- Introduction
- 2 Backgrounds
- Methods
- 4 Results
- 5 Potential Extensions
- 6 Conclusion

Markov Decision Processes

A Markov decision process (MDP) is defined by $\mathcal{M} = (\mathcal{S}, \mathcal{A}, M, r, \rho_0)$

- ullet state space ${\cal S}$
- ullet action space ${\cal A}$
- ullet transition probability distribution (dynamics) $s_{t+1} \sim M(\cdot|s_t,a_t)$
- reward function $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$
- initial state distribution $s_0 \sim \rho_0(\cdot)$



Source: OpenAl Spinning Up (spinningup.openai.com).

Markov Decision Processes

Goal: Find a (deterministic) **policy** function $\pi: \mathcal{S} \to \mathcal{A}$ such that

$$\pi^* = \argmax_{\pi} \mathbb{E}_{\tau \sim P^{\pi}(\cdot)}[R(\tau)]$$

where $R(\cdot)$ denotes the **infinite-horizon discounted return**

$$R(\tau) = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$

with discount factor $\gamma \in (0,1)$.

Markov Decision Processes

Goal: Find a (deterministic) **policy** function $\pi: \mathcal{S} \to \mathcal{A}$ such that

$$\pi^* = \argmax_{\pi} \mathbb{E}_{\tau \sim P^{\pi}(\cdot)}[R(\tau)]$$

where $R(\cdot)$ denotes the **infinite-horizon discounted return**

$$R(\tau) = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$

with discount factor $\gamma \in (0,1)$.

Question: How to maximize this objective when we only have a set of sampled trajectories with finite length collected from a non-optimal policy?

Bellman Equation

Consider the action-value function $Q: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$

$$Q^{\pi}(s,a) = \mathbb{E}_{ au \sim P^{\pi}(\cdot)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t,a_t) \, \middle| \, s_0 = s, a_0 = a
ight]$$

which satisfies the Bellman equation

$$Q^{\pi}(s,a) = r(s,a) + \gamma \cdot \mathbb{E}_{s' \sim M(\cdot|s,a)}[Q^{\pi}(s',\pi(s'))].$$

Bellman Equation

Consider the action-value function $Q: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$

$$Q^{\pi}(s,a) = \mathbb{E}_{ au \sim P^{\pi}(\cdot)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t,a_t) \, \middle| \, s_0 = s, a_0 = a
ight]$$

which satisfies the Bellman equation

$$Q^{\pi}(s,a) = r(s,a) + \gamma \cdot \mathbb{E}_{s' \sim M(\cdot|s,a)}[Q^{\pi}(s',\pi(s'))].$$

The **optimal action-value function** Q^* should satisfy

$$Q^*(s, a) = r(s, a) + \gamma \cdot \mathbb{E}_{s' \sim \mathcal{M}(\cdot | s, a)}[\max_{a \in \mathcal{A}} Q^*(s', a))]$$

and hence the optimal policy can be extracted by $\pi^*(s) = \max_a Q^*(s, a)$.

Deep Deterministic Policy Gradient

(1) Given a policy π , we can train a Q-network Q_{θ} by minimizing

$$L(\theta, \mathcal{D}) = \mathbb{E}_{(s_t, a_t, s_{t+1}, r_t) \sim \mathcal{D}}[(Q_{\theta}(s_t, a_t) - \underbrace{(r_t + \gamma Q_{\theta}(s_{t+1}, \pi(s_{t+1})))}_{\text{temporal-difference (TD) target}})^2]$$

so that Q_{θ} approximates Q^{π} (referred to as **TD learning**).

(2) Find the policy network $\pi_{\theta}(s) \approx \arg\max_{a} Q^{\pi}(s,a)$ by maximizing

$$\mathbb{E}_{\mathsf{s} \sim \mathcal{D}}[Q_{ heta_{\mathsf{targ}}}(\mathsf{s}, \pi_{ heta}(\mathsf{s}))]$$

where θ_{targ} is a lagged target Q-network introduced to stabilize training.

The **deterministic policy gradient** theorem (Silver et al., 2014) states that this is approximately the same as the original objective of the MDP.

Model-based Online Planning

Intuition: RL is difficult, regression is easy.

With a learned dynamics model M_{θ} and reward model R_{θ} , the optimal action can be selected by **model predictive control (MPC)**

$$\pi_{\mathsf{MPC}}(s_t) = \operatorname*{arg\,max}_{a_t} \operatorname*{max}_{a_{t+1:t+H}} \mathbb{E}\left[\sum_{i=0}^H \gamma^i R_{\theta}(s_{t+i}, a_{t+i})\right].$$

Model-based Online Planning

Algorithm 1 Model Predictive Control (MPC)

```
1: Input: Number of iterations J, population size N, number of elite samples K, roll-
     out horizon H, initial distribution parameters \mu^0, \Sigma^0, (learned) dynamics model M_\theta,
     (learned) reward model R_{\theta}, current state s_t.
 2: for each iteration i = 1, 2, ..., J do
         Sample N action sequences of length H from \mathcal{N}(\mu^{j-1}, \Sigma^{j-1}).
 3:
         for all N sequences \Gamma = (a_t, a_{t+1}, \dots, a_{t+H}) do
 4:
              for step j = 0, 1, ..., H - 1 do
                                                                                \triangleright Estimate trajectory return \phi_{\Gamma}
 5:
                   Update \phi_{\Gamma} = \phi_{\Gamma} + \gamma^t R_{\theta}(s_{t+1}, a_{t+1}).
 6:
                                                                                          \triangleright Initially setting \phi_{\Gamma} = 0
                   Predict s_{t+i+1} \sim M_{\theta}(s_{t+i}, a_{t+i}).
 7:
 8:
              end for
         end for
 9:
         Select the elite samples \{\Gamma_k^*\}_{k=1}^K corresponding to the top-K returns \{\phi_{\Gamma_k^*}\}_{k=1}^K.
10:
          Update parameters \mu^{j}, \sigma^{j} for the next iteration based on \{\Gamma_{k}^{*}\}_{k=1}^{K} and \{\phi_{\Gamma_{k}^{*}}\}_{k=1}^{K}.
11:
12: end for
13: Output: (a_t^*, a_{t+1}^*, \dots, a_{t+H}^*) \sim \mathcal{N}(\mu^J, \Sigma^J)
```

Time Complexity: O(JNH) model inference steps. J is the number of iterations, N is the population size, and H is the planning horizon.

April 15, 2025

TD Learning for MPC (TD-MPC)

Intuition: Use TD learning to model global optimality and use MPC to refine local behaviors, requiring a shorter planning horizon H.

Modified MPC Objective:

$$\pi_{\mathsf{TD-MPC}}(s_t) = \underset{a_t}{\mathsf{arg}} \max_{a_{t+1:t+H}} \mathbb{E}\left[\sum_{i=0}^{H-1} \gamma^i R_{\theta}(s_{t+i}, a_{t+i}) + \gamma^H Q_{\theta}(s_H, a_H) \right].$$

Note. All components of TD-MPC are implemented using deterministic neural networks.

Model-based Value Error of TD-MPC

Motivation: The model-based value error partially determines the performance of model-based online planning.

Theorem (modified and extended from Xiao et al., Theorem 1)

The model-based value error is bounded by

$$\left|V^{\pi}(s) - \hat{V}^{\pi}(s)\right| \leq \underbrace{K_{\mathcal{M}} \frac{\gamma - \gamma^{H+1}}{1 - \gamma} \epsilon_{m}}_{\textit{dynamics gap}} + \underbrace{\frac{1 - \gamma^{H}}{1 - \gamma} \epsilon_{r} + \gamma^{H} \epsilon_{q}}_{\textit{return estimation gap}}$$

and
$$K_{\mathcal{M}} \leq (L_R + 2\gamma V_{\mathsf{max}} L_M) \sqrt{1 + L_\pi^2}$$
.

Notations:

- **1** Dynamics Model Error $\max_{s,a} W(M(\cdot|s,a), \hat{M}(\cdot|s,a)) \leq \epsilon_m$;
- **2** Reward Model Error $\max_{s,a} |r(s,a) \hat{r}(s,a)| \le \epsilon_r$;
- **3** Value Function Error $\max_{s,a} |Q^{\pi}(s,a) \hat{Q}^{\pi}(s,a)| \le \epsilon_q$.

Outline

- Introduction
- 2 Backgrounds
- Methods
- 4 Results
- Dotential Extensions
- Conclusion

Overview

Key Design Choices:

- 1 Integration with TD-MPC.
- GP-based Correction of MLPs.
- Oecoupled Training and Inference.
- Integration with Deep Kernel Learning (DKL).

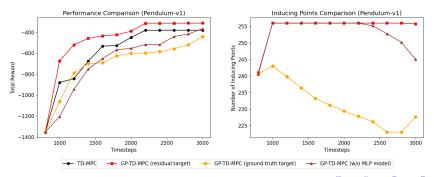
Note. We would refer to our method as GP-TD-MPC.

GP-based Correction

Instead of standalone GPs, we use an MLP model $f_{\theta}(\cdot)$ as the prior mean

$$\mathsf{output}(\mathbf{x}^*) = \mathit{f}_{\theta}(\mathbf{x}^*) + \underbrace{\mathbf{k}_{X\mathbf{x}^*}^{\top} \hat{\mathit{K}}_{XX}^{-1}(\mathbf{y} - \mathit{f}_{\theta}(X))}_{\mathsf{GP \ correction}}$$

and the GP training target becomes the residual $\mathbf{y} - f_{\theta}(X)$.



Computational Bottlenecks

Training a GP model involves maximizing the marginal log-likelihood (MLL) w.r.t. the kernel hyperparameters θ (e.g., the lengthscales)

$$\mathcal{L} = \log p(\mathbf{y} \mid X, \theta) \propto -\underbrace{(\mathbf{y} - m(X))^{\top} \hat{K}_{XX}^{-1} (\mathbf{y} - m(X))}_{\text{model fit}} - \underbrace{\log |\hat{K}_{XX}|}_{\text{complexity}}$$

which is computation-heavy.

Cached inference of the GP correction

$$\mathsf{output}(\mathbf{x}^*) = f_{\theta}(\mathbf{x}^*) + \underbrace{\mathbf{k}_{X\mathbf{x}^*}^{\top} \hat{K}_{XX}^{-1}(\mathbf{y} - f_{\theta}(X))}_{\mathsf{GP \ correction}}$$

takes O(n) time for each independent GP (n is the size of the data).

Stochastic Variational Gaussian Process (SVGP)

Evidence Lower Bound (ELBO): Using a variational distribution $q(\mathbf{u}) \sim \mathcal{N}(\mathbf{m_u}, S_\mathbf{u})$ w.r.t. m inducing points Z to approximate $p(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} \mid \mathbf{u})p(\mathbf{u}) \approx p(\mathbf{f} \mid \mathbf{u})q(\mathbf{u})$ so that

$$\log p(\mathbf{y}|X,\theta) \geq \mathbb{E}_{q(\mathbf{u})p(\mathbf{f}|\mathbf{u})}[\log p(\mathbf{y}|\mathbf{f})] - D_{\mathsf{KL}}(q(\mathbf{u})||p(\mathbf{u}))$$

where $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{n} p(\mathbf{y}_i|\mathbf{f}_i)$ usually factorizes over data instances.

Stochastic Variational Gaussian Process (SVGP)

Evidence Lower Bound (ELBO): Using a variational distribution $q(\mathbf{u}) \sim \mathcal{N}(\mathbf{m_u}, S_\mathbf{u})$ w.r.t. m inducing points Z to approximate $p(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} \mid \mathbf{u})p(\mathbf{u}) \approx p(\mathbf{f} \mid \mathbf{u})q(\mathbf{u})$ so that

$$\log p(\mathbf{y}|X,\theta) \geq \mathbb{E}_{q(\mathbf{u})p(\mathbf{f}|\mathbf{u})}[\log p(\mathbf{y}|\mathbf{f})] - D_{\mathsf{KL}}(q(\mathbf{u})||p(\mathbf{u}))$$

where $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{n} p(\mathbf{y}_i|\mathbf{f}_i)$ usually factorizes over data instances.

The inference can also be approximated by

$$\mathbb{E}[f(\mathbf{x}^*) | X, \mathbf{y}, \mathbf{x}^*] \approx \mathbf{k}_{Z\mathbf{x}^*}^{\top} K_{ZZ}^{-1} \mathbf{m}_{\mathbf{u}}$$

$$\mathsf{Var}[f(\mathbf{x}^*) | X, \mathbf{y}, \mathbf{x}^*] \approx k(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}_{Z\mathbf{x}^*}^{\top} K_{ZZ}^{-1} (K_{ZZ} - S_{\mathbf{u}}) K_{ZZ}^{-1} \mathbf{k}_{Z\mathbf{x}^*}$$

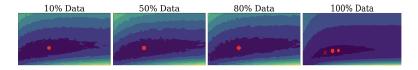
where the mean prediction only takes O(m) time.

Note. We consider $m \equiv 0$ for simplicity.

Decoupled Training and Inference

Motivation: The SVGP training introduces $O(m^2)$ additional parameters, which we might want to avoid to reduce training time.

Training: Subsample a mini-batch of data for scalable training.³

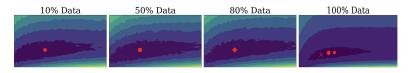


³Shifan Zhao et al. Efficient Two-Stage Gaussian Process Regression Via Automatic Kernel Search and Subsampling. 2024.

Decoupled Training and Inference

Motivation: The SVGP training introduces $O(m^2)$ additional parameters, which we might want to avoid to reduce training time.

Training: Subsample a mini-batch of data for scalable training.³

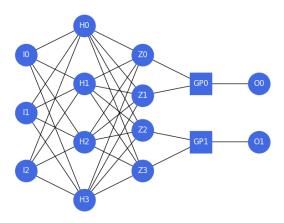


Inference: Choose Z by **farthest point sampling** or **pivoted Cholesky**, then obtain the optimal variational distribution in $O(nm^2)$ time

$$\mathbf{c} = K_{ZX} \Sigma_{\mathbf{y}}^{-1} (\mathbf{y} - f_{\theta}(X)), \qquad C = K_{ZX} \Sigma_{\mathbf{y}}^{-1} K_{XZ}$$
$$\mathbf{m}_{\mathbf{u}} = K_{ZZ} (K_{ZZ} + C)^{-1} \mathbf{c}, \qquad S_{\mathbf{u}} = K_{ZZ} (K_{ZZ} + C)^{-1} K_{ZZ}.$$

Deep Kernel Learning

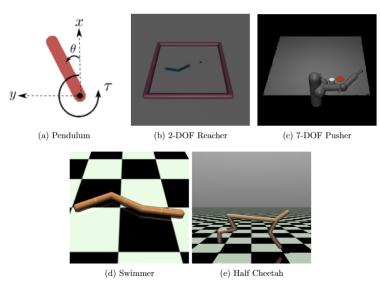
In non-stationary and/or high-dimensional settings, we may introduce a neural network feature extractor as kernel hyperparameters, known as deep kernel learning (DKL).



Outline

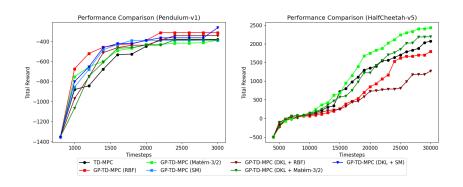
- Introduction
- 2 Backgrounds
- Methods
- 4 Results
- Dotential Extensions
- Conclusion

Overview



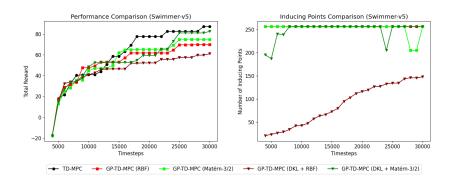
Successful Cases

Certain variants of GP-TD-MPC outperformed the baseline:



Failed Cases

For the Swimmer task, only GP-TD-MPC with the Matérn kernel and DKL delivered comparable performance in the end.



Key Findings

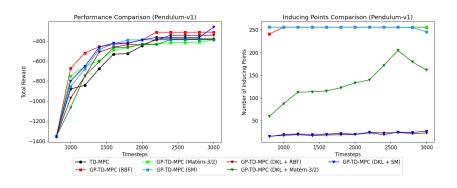
From the experimental results, we derive the following observations:

- GP-TD-MPC with DKL typically requires fewer inducing points to achieve the error tolerance for the pivoted Cholesky method.
- @ GP-TD-MPC with the Matérn-3/2 kernel consistently matches or even outperforms the TD-MPC baseline.

Number of Inducing Points

The **pivoted Cholesky method** selects up to m inducing points and may terminate early if the truncation error falls below the specified tolerance.

For $m \le 256$, only DKL variants reached the default tolerance.

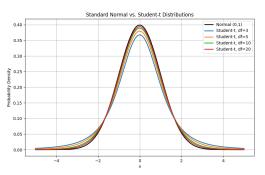


Modeling Contact Dynamics

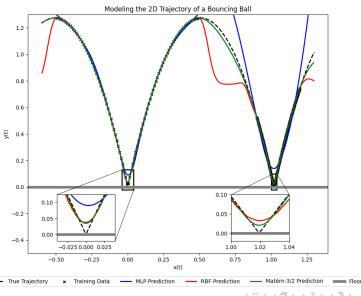
The spectral densities of the RBF kernel and the Matérn kernel are

$$\begin{split} p_l^{\mathsf{RBF}}(s) &= (2\pi l^2)^{D/2} \exp\left(-2\pi^2 l^2 s^2\right) \\ p_{l,\nu}^{\mathsf{Mat\'ern}}(s) &= \frac{2^D \pi^{D/2} \Gamma(\nu + D/2) (2\nu)^{\nu}}{\Gamma(\nu) l^{2\nu}} \left(\frac{2\nu}{l^2} + 4\pi^2 s^2\right)^{-(\nu + D/2)} \end{split}$$

resembling the Gaussian distribution and the t-distribution.



Toy Example: Trajectory of a Bouncing Ball



Runtime and Efficiency

Task Name	TD-MPC	RBF		Matérn-3/2		Spectral Mixture	
		Standard	DKL	Standard	DKL	Standard	DKL
Pendulum	175.13	260.31	266.87	279.64	297.81	430.92	287.64
Reacher	127.96	172.53	173.18	173.31	174.48	856.31	182.29
Pusher	201.40	305.83	293.66	315.20	302.04	_	_
Swimmer $(m \le 256)$	1049.06	1531.21	1603.92	1537.10	1635.02	_	_
Swimmer $(m \le 1024)$	1049.06	1592.99	1603.02	1666.68	1732.88	_	-
Half Cheetah	1064.46	2019.56	1631.59	2794.53	2818.31	-	-

Table 1: Comparison of total runtime (in seconds) averaged across 5 trials.

Outline

- Introduction
- 2 Backgrounds
- Methods
- Results
- Potential Extensions
- 6 Conclusion

Alternative Inference Methods

Motivation: For high-dimensional tasks that require a larger amount of data, more inducing points might be required. However, this may slow down inference. Instead, we consider alternative inference methods.

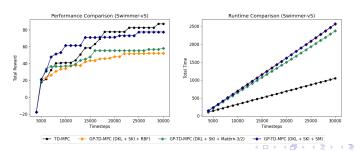
- **Q** Local Kernel Interpolation. O(1)-time inference, scaling more effectively with a larger number of inducing points;
- ② Dynamical Local Projection. Making more efficient use of the limited inducing points.

Local Kernel Interpolation

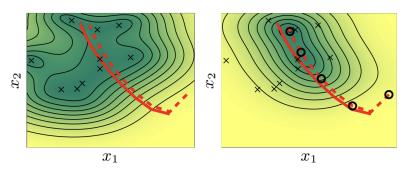
Use **cubic interpolation** to obtain sparse matrix W s.t. $WK_{XX} \approx K_{XZ}$ and hence $K_{XX} \approx K_{XZ}K_{ZZ}^{-1}K_{ZX} \approx W^{\top}K_{ZZ}W$.

At any test location \mathbf{x}^* , compute the sparse interpolation vector $\mathbf{w}_{\mathbf{x}^*}$ s.t. $\mathcal{K}_{ZZ}\mathbf{w}_{\mathbf{x}^*}\approx \mathbf{k}_{Z\mathbf{x}^*}$, we can approximate the original GP correction by

$$\mathsf{output}(\mathbf{x}^*) = f_{\theta}(\mathbf{x}^*) + \underbrace{\mathbf{w}_{\mathbf{x}^*}^{\top} K_{ZZ} W (W^{\top} K_{ZZ} W + \sigma_{\epsilon}^2 \mathbf{I})^{-1} (\mathbf{y} - f_{\theta}(X))}_{\mathsf{LKI \ Correction}}.$$



Inspired by **online variational conditioning (OVC)**⁴ and **dynamic sparse GPs for MPC**⁵.



⁴Wesley J. Maddox, Samuel Stanton, and Andrew Gordon Wilson. *Conditioning Sparse Variational Gaussian Processes for Online Decision-making*. 2021.

⁵Lukas Hewing, Juraj Kabzan, and Melanie N. Zeilinger. "Cautious Model Predictive Control Using Gaussian Process Regression". In: (2020).

Given a set of M inducing points Z, we compute the corresponding \mathbf{c} and C, they can thus be projected to a subset $Z' \subseteq Z$ of size m by

$$\mathbf{c}' = K_{Z'X} \Sigma_{\mathbf{y}}^{-1} \mathbf{y} \approx K_{Z'Z} (K_{ZZ}^{-1} \mathbf{c}),$$

$$C' = K_{Z'X} \Sigma_{\mathbf{y}}^{-1} K_{XZ'} \approx K_{Z'Z} (K_{ZZ}^{-1} C K_{ZZ}^{-1}) K_{ZZ'}.$$

to compute the optimal variational distribution w.r.t. Z'. Each time, DLP takes $O(M^2m)$ time, independent of the dataset size.

Given a set of M inducing points Z, we compute the corresponding \mathbf{c} and C, they can thus be projected to a subset $Z' \subseteq Z$ of size m by

$$\mathbf{c}' = K_{Z'X} \Sigma_{\mathbf{y}}^{-1} \mathbf{y} \approx K_{Z'Z} (K_{ZZ}^{-1} \mathbf{c}),$$

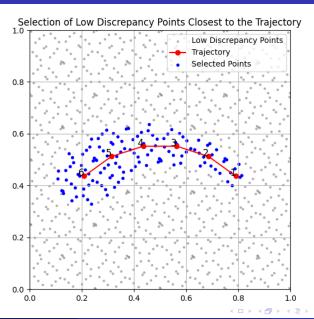
$$C' = K_{Z'X} \Sigma_{\mathbf{y}}^{-1} K_{XZ'} \approx K_{Z'Z} (K_{ZZ}^{-1} C K_{ZZ}^{-1}) K_{ZZ'}.$$

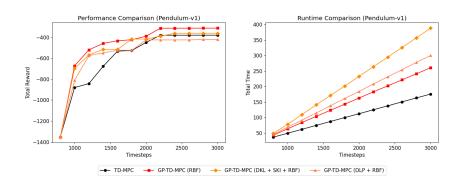
to compute the optimal variational distribution w.r.t. Z'. Each time, DLP takes $O(M^2m)$ time, independent of the dataset size.

Let \mathbf{p} be the reference path, we can select Z' according to

$$cost(\mathbf{z}, \mathbf{p}) = \min_{h=1,\dots,H-1} \eta^h dist(\mathbf{z}, \overline{\mathbf{p}_h \mathbf{p}_{h+1}})$$

which encourages more points to be selected near line segments corresponding to larger timesteps.

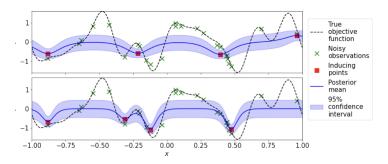




Future Work

We recommend some directions for future explorations:

- More informative inducing point allocation (IPA).⁶
- Uncertainty quantification using pathwise conditioning.⁷
- **3** Kernel composition for domain-specific applications.



⁶Henry B. Moss, Sebastian W. Ober, and Victor Picheny. *Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation*. 2023.

⁷James T. Wilson et al. *Pathwise Conditioning of Gaussian Processes*. 2021.

Hu Hanyang

Outline

- Introduction
- 2 Backgrounds
- Methods
- Results
- Dotential Extensions
- 6 Conclusion