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1 Introduction and Preliminaries

How do we tell stories from high-dimensional data in which our intuition hardly works?
This project studies UMAP [13], an unsupervised learning algorithm designed to uncover low-

dimensional structures within high-dimensional data, i.e. (nonlinear) dimensionality reduction. In this
section, we first describe the curse of dimensionality (CoD) for Euclidean distance-based machine learn-
ing methods, which motivates dimensionality reduction. Subsequently, we outline the notion of manifold
learning. Furthermore, we discuss how to leverage insights from tangent spaces of differentiable manifolds
to estimate the intrinsic dimension of the low-dimensional manifold structure.

1.1 Curse of Dimensionality in the Euclidean Space

Kernel methods in machine learning such as kernel SVM [6], Gaussian processes [19], and kernel
density estimation [26] commonly employ stationary kernels: for any pair of data points x,y ∈ Ω in the
domain Ω, k(x,y) only depends on the displacement x − y, independent of exact positions of x or y.
Hence, we can write k(x,x′) = k(x− x′).

One of the most popular choices is the radial basis function (RBF) kernel which resembles the
probability density function of a multivariate Gaussian distribution:

k(x− x′) = exp

{
−1

2

d∑
i=1

(xi − x′
i)

2

l2i

}

where l ∈ Rd is the lengthscale hyperparameter that determines the importance of each dimension.
This stationary assumption has several benefits. Firstly, estimating hyperparameters for the station-

ary kernel is data-efficient because we only need data from a small part of the domain to reasonably
infer its global behavior [4]. In addition, it also admits efficient kernel approximation methods such as
random Fourier features [18]. However, when the kernel function value decays as the Euclidean distance
between points increases (e.g. the RBF kernel), it suffers the well-known issue referred to as the curse of
dimensionality (CoD): points uniformly distributed in a D-dimensional hypercube tend to get far away
from each other as the dimension D increases [1]. Specifically, we could obtain the following result:

Proposition 1.1. Let X,Y be independent random variables uniformly distributed in [0, 1]D, then the
expectation E[∥X − Y ∥2] is Θ(

√
D).

Proof. We can bound the expectation E[∥X − Y ∥2] as follows:

(E[∥X − Y ∥2])2 ≤ E[∥X − Y ∥22] =

D∑
i=1

E[(Xi − Yi)
2] =

1

6
D

since Xi, Yi are i.i.d. uniform on [0, 1] for i = 1, . . . , D. Meantime, we have

E[∥X − Y ∥2] ≥ (
√
D)−1E[∥X − Y ∥1] = (

√
D)−1

D∑
i=1

E[|Xi − Yi|] = (
√
D)−1 · 1

3
D =

1

3

√
D

since ∥X − Y ∥2 ≥ (
√
D)−1∥X − Y ∥1.

Remark. We note that the CoD could refer to various phenomena for large D, and we only mentioned
a specific situation (the “vastness” of high-dimensional Euclidean space) as a motivating example.

Therefore, for methods based on the RBF kernel (or similar kernels, e.g. the Matérn kernel), data
points tend to be considered less similar as dimensionality increases, which requires a much larger mag-
nitude of data to convey effective reasoning, increasing the complexity of the problem. Based on this
observation, a simple yet effective approach to overcome this CoD is to (implicitly or explicitly) scale the
distance between data points by a factor of (

√
D)−1. An interesting example can be found in a recent

paper by Hvarfner et al. [9] on high-dimensional Bayesian optimization.
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Figure 1: Estimated density (via kernel density estimation [26]) of the Euclidean distance before and after
scaling by (

√
D)−1 between two points sampled from Uniform([0, 1]D), for D ∈ {3, 10, 50, 100, 1000}.

By Hoeffding’s inequality, the distribution of the scaled distance concentrates around
√

1/6 ≈ 0.41.
Furthermore, the variance of the unnormalized distance seems to converge to a constant.

However, the distribution of the scaled distance in high-dimensional space still differs from that in
the low-dimensional case in terms of variance. From the Hoeffding’s inequality, we have

P

[∣∣∣∣∣
(
∥X − Y ∥2√

D

)2

− 1

6

∣∣∣∣∣ > ϵ

]
= P

[
1

D

∣∣∥X − Y ∥22 − E[∥X − Y ∥22]
∣∣ > ϵ

]
≤ 2 exp

(
−2Dϵ2

)
.

hence the scaled distance of points uniformly distributed in [0, 1]D concentrates around
√

1/6 ≈ 0.41 for
large D, as shown in Figure 1.

On the other hand, notice that E[(Xi−Yi)
2] = 1/6 > 0 and Var((Xi−Yi)

2) = 7/180 for i = 1, . . . , D,
hence we have the limit of the variance

Var(∥X − Y ∥2)→ Var((Xi − Yi)
2)

4E[(Xi − Yi)2]
=

7

120
as D →∞

by the central limit theorem (see the discussion in [22]). This could be observed in Figure 1 as well.
Therefore, scaling the distance by (

√
D)−1 results in the variance converging to zero, as stated below.

Proposition 1.2. Let X,Y be independent random variables uniformly distributed in [0, 1]D, then

Var((
√
D)−1∥X − Y ∥2)→ 0 as D →∞.

The above observations suggest that linearly scaling down distances between data points by a factor
of (
√
D)−1 would cause the distances between any pair of points to become nearly identical. This is

problematic for stationary kernels (or more general machine learning methods based on the Euclidean
distance): when querying at a point, almost all data points are considered nearly equally important.
Consequently, the Euclidean distance (with or without linear scaling) might not be suitable for modeling
unstructured high-dimensional data. However, when we have prior knowledge that the data is structured,
we could employ certain methods to identify the underlying low-dimensional structure and alleviate the
CoD. For example, manifold learning techniques [5, 13, 20] could reduce the dimensionality when data
lies on some low-dimensional manifold.

1.2 Manifolds for Dimensionality Reduction

The term “manifold” often comes up in discussions about dimensionality reduction [5, 13, 20]. The
concept is essentially generalizing the idea of curves and surfaces: near each point, a manifold locally
looks like a flat space, resembling many real-world scenarios. Consider a “Swiss roll”, i.e. a 2-dimensional
manifold (as it is a surface) that is rolled up in 3-dimensional space. Manifold learning methods work
by “unrolling” it, obtaining a map from R3 to R2, hence reducing the dimension by 1. See Figure 2(b).
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In general, if we assume our data are distributed on an n-dimensional manifold lying in the m-
dimensional input space (n≪ m), then we might be able to use some methods to identify this manifold
and map them into Rd (where n ≤ d ≪ m), hence reducing the dimensionality. It is important to note
that the underlying manifold is not necessarily able to embed in Rn; rather, we can only assert that
it locally “looks like” an open set in Rn (see Figure 2(a)). For instance, we cannot embed a sphere in
R2 although it is a 2-dimensional manifold. However, from results in differential geometry (e.g. the
Nash embedding theorem [15]), these manifolds can be embedded in Rd isometrically (i.e., preserving
distances) where d is only moderately larger than n.

Practically, since we are only given a finite number of data points, a common technique to identify and
represent the manifold is to build a graph of which data points are the vertices [3, 5, 13, 20], then some
notion of distance (based on weighted edges) between vertices reveals the geometry of the approximated
manifold. In particular, we may consider the neighborhood graph which draws edges between K-nearest
neighbors (KNN), capturing the topological properties. Intuitively, a larger K makes the KNN graph
carry more global information, and a smaller K makes it carry more local information. Given the
constructed graph, we can use force-directed graph drawing [12] to lay the vertices in a low-dimensional
space whilst preserving certain useful properties of the graph.

(a) (b)

Figure 2: (a) An Illustration of a real manifold (https://ncatlab.org/nlab/show/manifold); (b)
Identify a manifold structure (i.e. a Swiss roll) from discrete data via graphs, and gradually unroll it to
obtain 2-dimensional embeddings (https://www.numerical-tours.com/matlab/shapes_7_isomap/).

1.3 Tangent Spaces and the Embedding Dimension

How do we find the intrinsic dimension n, and hence determine the embedding dimension d?
Unfortunately, many popular dimension reduction methods such as VAE [10] or UMAP [13] need to

assume that n is known a priori or try out with different values (then validate to find the best option).
On the other hand, spectral embedding methods such as diffusion maps [5] could use a cut-off of the
large eigenvalues of the |D| × |D| kernel matrix to directly determine the embedding dimension, due to
spectrum decay. However, the O(|D|3) eigendecomposition typically does not scale with large |D|.

We consider the fact that the tangent space at any point of an n-dimensional manifold is an n-
dimensional vector space.1 This is intuitive: the tangent line of a smooth curve (a 1-dimensional mani-
fold) is 1-dimensional, the tangent plane of a smooth surface (a 2-dimensional manifold) is 2-dimensional,
etc. Consequently, we could estimate the dimension of the manifold’s tangent spaces and take it as our
estimate of the intrinsic dimension n. Notice that the former should be easier due to its linearity and
locality, and hence could usually be approximated by conducting PCA on nearest neighbors, for example
in local tangent space alignment [27].

1It might be a nice (and not too difficult) exercise to prove this statement once all definitions are cleared by showing
that the Jacobians of charts are linear isomorphisms. Interested readers may refer to Chapter 1 in [25].
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Figure 3: Illustrations of simplices (https://www.researchgate.net/publication/339744199_
Topological_portraits_of_multiscale_coordination_dynamics). 0-D simplices are points, 1-D
simplices are line segments, 2-D simplices are triangles, 3-D simplices are tetrahedrons, etc.

In particular, for an arbitrary data point p ∈ D, take its K-nearest neighbors q1, . . . , qK ∈ D,
then qi − p approximates the tangent vectors in the tangent space Tp(M) of M at p, where M is the
underlying manifold. Assume that K is large enough so that {qi − p}Ki=1 spans Tp(M), we can form a
K×K covariance matrix and automatically determine the number of principal components (by applying
methods like probabilistic PCA [21] that is capable of performing model selection). On another note, we
could choose multiple points p1, . . . , pL, and summarize the results to obtain a more robust estimation.

Once the intrinsic dimension n is estimated, we might heuristically choose the embedding dimension
d to be slightly larger than n (e.g. using insights from the Nash embedding theorem [15]). Choosing
d < n is also possible and can be particularly useful if we want to visualize the data in 2-D or 3-D space.
However, it is important to note that this setting may result in failures to preserve the global structure.

2 Uniform Manifold Approximation and Projection

In this section, we summarize how the algorithm of interest - UMAP [13] - constructs graphs to ap-
proximate the underlying manifold; and how data points in the graph can be projected in low-dimensional
space using neural networks. This approach is referred to as the parametric UMAP [20]. We are more in-
terested in parametric UMAP instead of its original version because it is more flexible, allowing efficient
projection of new points and reconstruction from the embedding space to the original space (similar
to autoencoders [2, 10]), which could be useful in many contexts, say Bayesian optimization (where
many unlabeled design points are available to identify the underlying structure, but evaluating each
design point is expensive). Specifically, (parametric) UMAP makes the following assumptions, which are
leveraged to identify the underlying manifold structure using graphs:

1. The data are uniformly distributed on a (Riemannian) manifold, which means that any ball of
fixed volume must contain about the same number of data points. Conversely, a ball centered at a
data point containing exactly the K-nearest neighbors should be of a fixed volume. This requires
a principled way to warp the notion of distance by assigning weights to edges.

2. The underlying manifold is locally connected, meaning that connecting vertices that are nearest
neighbors is reasonable (since there should be no isolated points).

3. The primary goal of the machine learning algorithm is to preserve the topological structure.

2.1 Approximate Manifolds via Fuzzy Simplicial Sets

UMAP approximates a manifold by fuzzy simplicial sets, which turns out to be constructing a graph
by cleverly assigning weights to edges:

1. Simplices are just the generalization of triangles in arbitrary dimensions (see Figure 3 for an
illustration), and a simplicial set can be understood as a collection of simplices that are put together
to capture the geometry of a manifold. For computational purposes, UMAP only considers 0-D
and 1-D simplices, hence the simplicial set here is just a graph as aforementioned.
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2. The fuzziness refers to the uncertainty of the membership of each edge in the graph, considering the
noise and outliers. For example, although all data points are adjacent to their K-nearest neighbors
in the constructed graph, the grades of membership of edges incident to a vertex that is far from
all its neighbors should be assigned low values, indicating that it is likely to be an outlier.

Specifically, consider the data set D = {x1, . . . ,xN} ⊂ X and a metric d : X × X → R≥0. Given the
hyperparameter K, we construct the K-nearest neighbor graph G = (V,E) where V = D.

The weight of each edge in E should reflect its grade of membership, the specific weight assignment
is outlined as follows: For each xi ∈ D, let {xi1 , . . . ,xiK} be the set of its K-nearest neighbors. Define
ρi and σi such that 

ρi = min{d(xi,xij ) | 1 ≤ j ≤ K, d(xi, d(xi,xij ) > 0)},
K∑
j=1

exp

(−max(0, d(xi,xij )− ρi)

σi

)
= log2(K)

and assign the weight to (xi,xij ) for 1 ≤ j ≤ K according to

w((xi,xij )) = exp

(−max(0, d(xi,xij )− ρi)

σi

)
∈ (0, 1].

We can observe that the definition of ρi ensures w((xi,xij )) = 1 for at least one j ∈ {1, . . . ,K}, reflect-
ing the assumption of local connectivity and overcoming the “vastness” of high-dimensional Euclidean
space discussed in Section 1.1. The definition of σi normalizes the distance, reflecting the assumption that
data are uniformly distributed on the manifold. The choice of RHS (i.e. log2(K)) is rather empirical.2

Furthermore, notice that the directed edges (xi,xij ) and (xij ,xi) might be of different weights. If we
interpret these weights as uncertainties in the membership of each directed edge, then the uncertainty
of the corresponding undirected edge (xi,xij ) could be

w̃((xi,xij )) := w((xi,xij )) + w((xij ,xi))− w((xi,xij ))× w((xij ,xi))

which resembles the identity P (A∪B) = P (A)+P (B)−P (A∩B), i.e. the probability that the undirected
edge is in the graph equals the probability that at least one of the directed edge is in the graph.

Remark. This standard approach in UMAP might not preserve outliers directly (although detecting
outliers in low-dimensional space might still be easier), one alternative is to consider “intersections”
instead of “unions”: w̃((xi,xij )) := w((xi,xij ))×w((xij ,xi)), ensuring that outliers stay disconnected.3

2.2 Projection using Force-Directed Graph Drawing

Given the constructed graph, UMAP uses a force-directed graph layout algorithm to embed the
data points {xi} ⊂ Rm to {zi} ⊂ Rd in low-dimensional space, which is equivalent to minimizing a
cross-entropy loss [13, 20]. Specifically, let the weight of an edge between two embeddings zi, zj be

qij = Φ(zi, zj) = (1 + a∥zi − zj∥2b)−1

where a, b are hyperparameters controlling how tightly UMAP is allowed to pack points together. Let
pij = w̃((xi,xj)) (put pij = 0 if the two vertices are not adjacent). The following loss is minimized

L =
∑
i ̸=j

pij log

(
pij
qij

)
+ (1− pij) log

(
1− pij
1− qij

)
which is the sum of KL-divergences between Bernoulli(pij) and Bernoulli(qij), i.e. the probability distri-
butions on whether the edges (xi,xj) and (zi, zj) should exist in the graph, respectively. Unlike t-SNE
[23], it does not require normalization of qij over all edges.

Minimizing L via gradient descent could be interpreted as applying attractive and repulsive forces
between embedding points zi and zj , since log(1/qij) decreases (resp. log(1/(1 − qij)) increases) when
s = ∥zi − zj∥ decreases. Furthermore, minimizing pij log(pij/qij) requires qij to be large whenever pij
is large; and minimizing (1 − pij) log((1− pij)/(1 − qij)) requires qij to be small when pij is small.4 In

2See this discussion: https://github.com/lmcinnes/umap/discussions/920.
3See this tutorial in the official document of UMAP: https://umap-learn.readthedocs.io/en/latest/outliers.html.
4See this blog post for a more general discussion: https://dibyaghosh.com/blog/probability/kldivergence.html.
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particular, by taking partial derivatives over s = ∥zi − zj∥, we have

Fattractive =
∂

∂s

[
pij log

(
pij
qij

)]
=

2abpij
(a + s−2b)s

Frepulsive =
∂

∂s

[
(1− pij) log

(
1− pij
1− qij

)]
= − 2b(1− pij)

(1 + as2b)s

hence the force is balanced (i.e. |Fattractive| = |Frepulsive|) at

s∗ = 2b

√
1− pij
apij

which has negative derivative over pij ∈ (0, 1), i.e. as pij increases, s∗ decreases, and vice versa. Hence the
loss function L encourages positive correlations between the distances of data points in the input space
and their corresponding distances in the embedding space. In addition, the attractive force Fattractive → 0
as s→∞, which may suggest that suitable initializations (e.g. eigenmaps [3, 13]) or regularizations (e.g.
Pearson correlation [20]) are required to preserve the global structure or to facilitate faster and more
stable convergence. A matters arising article [11] reports on empirical justifications of this statement.

(a) (b)

Figure 4: (a) Illustrations of absolute values of the attractive and repulsive forces between zi and zj .
The attractive force is weak (resp. the repulsive force is strong) when s = ∥zi − zj∥ is small. However,
the attractive forces also diminish when s is very large. In general, the higher pij is, the smaller s is
required to balance the force. (b) a and b are estimated to fit the offset exponential decay Ψ using a
differentiable curve Φ, where min dist = scale = 1.

Remark. The hyperparameters a and b are not easily interpretable. However, they are estimated to fit
an offset exponential decay (similar to the weights between data points in the original space defined in
Section 2.1) related to two other hyperparameters - the effective minimum distance between embedding
points min_dist and the scaling factor spread (corresponding to ρi and σi in Section 2.1):

q̃ij = Ψ(zi, zj) = exp

(
−max(0, ∥zi − zj∥ −min dist)

spread

)
The benefit of using the formulation of Φ instead of Ψ is that it is differentiable. See Figure 4(b).

The original UMAP [13] uses stochastic gradient descent with learning rate η to minimize the loss
function L aforementioned. In particular, the initialization is based on spectral embeddings similar to
eigenmaps [3] to achieve faster and more stable convergence. In each epoch, each edge (xi,xj) ∈ E
is sampled based on its probabilistic weight pij , then the embedding zi is attracted to zj by updating
zi ← zi + η∇(log(Φ))(zi, zj). Furthermore, T embedding points {zk1

, . . . , zkT
} are sampled randomly as

negative samples [14], and zi is repulsed from them by updating zi ← zi+η
∑T

t=1∇(log(1−Φ))(zi, zkt
).5

5Notice that the numerators pij and 1−pij of the fractions appeared in L does not matter for the optimization problem.
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Clearly, the sum of attractive forces for edges sampled with probability pij is an unbiased estimator
of the gradient of

∑
i ̸=j pij log(pij/qij). One question is, how does negative sampling approximate the

gradient of
∑

i ̸=j(1−pij) log((1−pij)/(1−qij))? Intuitively, for large |D|, the majority of the data point
xj ∈ D are not adjacent to xi due to the sparsity of the constructed graph, i.e. pij = 0. Therefore, ran-
domly sampling T points and assuming them to be negative samples might make a reasonable estimate.
However, we should notice that it may change the weight of repulsive forces drastically, depending on
the negative sampling rate T and the data set size |D|.6

In the case of parametric UMAP [20], the same loss function is optimized over the neural network
parameters. However, the edges are sampled in batches of fixed size B, with the probability of sampling
each edge being proportional to its weight. Negative sampling is performed by having multiple copies of
the batch of edges (i.e. paired vertices) and randomly shuffling the vertices on one side to form negative
pairs. To capture the global structure, parametric UMAP uses the sample Pearson correlation:

CPearson =

∑B×B
i=1 (d

(i)
X − dX)(d

(i)
Z − dZ)√∑B×B

i=1 (d
(i)
X − dX)2

√∑B×B
i=1 (d

(i)
Z − dZ)2

where dX , dZ are flattened B×B matrices7 representing pairwise distances within batches of original and
embedded data points, respectively. The training objective is to minimize the regularized loss function
L − α · CPearson where α ≥ 0 is a hyperparameter. Intuitively, the distances between embedded data
points should be more positively correlated with the corresponding distances in the original space.

On another note, parametric UMAP may converge slower than the original UMAP [20]. Intuitively,
learning an embedding map is a more complex task than directly adjusting embeddings obtained from
eigenmaps. We can think of it as a trade-off between flexibility and convergence speed.

3 Implementation and Applications

In this section, we discuss the details of our implementation of parametric UMAP using the PyTorch
library [16], then apply it to some synthetic and real-world datasets.

To compute the nearest neighbor graph, we follow the same practice in the implementation of the
original UMAP [13] by using the PyNNDescent library which implements the NN-Descent algorithm [8],
returning an approximate result of KNN with a reported empirical complexity of O(|D|1.14).

To compute σi for each data point xi ∈ D (see Section 2.1), we use the binary search algorithm,
which may require us to find an upper bound. Consider

σ̃i := max{d(xi,xij ) | 1 ≤ j ≤ k, d(xi, d(xi,xij ) > 0)} − ρi

so that

exp

(−max(0, d(xi,xij )− ρi)

σ̃i

)
≥ exp(−1)

for j = 1, . . . ,K. We have K exp(−1) ≥ log2(K) for K ≥ 9, suitable for the default choice of K = 15.
For smaller K, we may multiply a constant factor C > 1 on σ̃i so that K exp(−1/C) ≥ log2(K). This
upper bound is very loose, but it should be sufficient in practice.

To represent the constructed graph more efficiently, we use the compressed row sparse matrix imple-
mented in the SciPy library [24] since there are only K non-zero entries in each row of the KNN graph’s
weighted adjacency matrix A. Moreover, the weighted adjacency matrix B for the fuzzy simplicial set
(see Section 2.1) is computed by

B = A + A⊤ −A ◦A⊤

where ◦ is the Hadamard (or element-wise) product. Notice that B is symmetric.
We use the edges (corresponding to the non-zero entries in the sparse symmetric matrix B) to form

a PyTorch-style dataset. For each iteration, we use the torch.utils.data.WeightedRandomSampler to
sample a batch of edges based on their weights. The negative samples are obtained by concatenating
multiple copies of the batch and shuffling vertices on one side randomly.

6An interesting discussion is presented in [7]; however, it is beyond the scope of this project.
7We choose the first vertex in each edge (as pair of vertices) so that there are B vertices to compute pairwise distances.
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We run probabilistic PCA [21] implemented in the Scikit-Learn library [17] on the nearest neighbors
of data points to estimate the dimension of the tangent space, and hence the intrinsic dimension of the
underlying manifold (see Section 1.3).

3.1 Swiss Roll

Figure 5 demonstrates the application of probabilistic PCA to estimate the intrinsic dimension. As
expected, the tangent spaces at 80% of the randomly selected points are estimated to be 2-dimensional.

(a) (b) (c)

Figure 5: (a) The synthetic dataset for a Swiss roll (with a hole). (b) The tangent space approximated
from a neighborhood of a data point. (c) The histogram of the dimension estimated by probabilistic
PCA over 100 randomly chosen data points, the Swiss roll is identified as a 2-dimensional manifold.

For simplicity, we generate 2000 synthetic data points on a Swiss roll without holes and noises
(contrary to Figure 5(a)) and run 1000 epochs training to see how our implementation of the parametric
UMAP unfolds the Swiss roll with different weights put on the Pearson correlation term CPearson. As
shown in Figure 6, setting higher weight values α for CPearson allows the algorithm to better preserve the
global structure in the embedding. For smaller weight α, the algorithm tends to focus more on unfolding
the Swiss roll to a rectangle.

(a) (b) (c)

Figure 6: The embedded Swiss roll dataset with α ∈ {0, 0.01, 0.1} where α is the weight put on Cpearson.

3.2 Three Concentric Semicircles

In this example, we demonstrate the advantage of (parametric) UMAP as a preprocessing step for
other learning algorithms, such as clustering, even without dimensionality reduction. We generate a
synthetic dataset of three concentric semicircles that violates the assumptions of the K-means algorithm
(i.e., each cluster could be represented by a centroid) and train the model on two of the semicircles (red
and blue) only. Notably, we observe that it generalizes to the green semicircle to some extent (though
not perfectly), highlighting the flexibility of parametric UMAP as it can directly embed new data points
without modifying the model parameters (i.e., without retraining). See Figure 7.
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Why does applying (parametric) UMAP to this dataset improve K-means clustering? From a topo-
logical point of view, the three semicircles form distinct (path) connected components, meaning that
there exists no path between points from different semicircles, hence only repulsive forces act between
these points. When these components are repelled far apart, it is easier for the K-means algorithm to
identify distinct groups and assign points to the correct cluster.

Figure 7: Clustering of three semicircles using K-means, before and after parametric UMAP embedding
(the green data points are not included in the training set). UMAP improves cluster separation by
repulsing the semicircles away in the embedding space (as they form different connected components),
resulting in a more meaningful clustering result. Note. In this experiment, we set a larger negative
sampling rate T (increased from the default T = 5 to T = 200) to encourage stronger repulsion.

3.3 MNIST Handwritten Digits

For the MNIST handwritten digits dataset, we train the parametric UMAP model to embed in 2-
dimensional space for visualization. To reduce the computation requirement, we only select 10000 images
from the dataset. The result after training for 500 epochs (with zero weight on the Pearson correlation
term) is shown in Figure 8.

We would also like to apply the tangent space approach to estimate the intrinsic dimension of this real-
world dataset. However, computing probabilistic PCA requires fitting PCAs for all possible dimensions,
which is computationally intractable in very high-dimensional settings. Alternatively, we could randomly
sample 10 dimensions from the entire list of 784 = 28×28 possible dimensions and estimate the effective
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dimension as the one with the highest score.8 Moreover, we may further enhance the efficiency by
assuming that the intrinsic dimension should be less than 300, so that fewer neighboring points (e.g.
500 > 300) need to be found. The result is computed in nearly half an hour, see Figure 9.

(a) (b)

Figure 8: Embeddings and loss curves (the cross-entropy loss and regularization term −CPearson, notice
the negative sign) after training for 500 epochs. Although our model has not fully converged yet (indicated
by the loss curve), it has captured some meaningful patterns. We hypothesize that the category groups
{4, 7, 9} and {2, 3, 5, 8} are not fully separated in this stage because their members share more visual
similarities in handwriting. In addition, the negative Pearson correlation term−CPearson starts to increase
after initially decreasing, as the convergence of the cross-entropy loss begins to slow down.

Figure 9: The histogram of effective dimensions of tangent spaces estimated on 200 randomly chosen
points, assuming that the intrinsic dimension is at most 300.

4 Conclusion

This report explored the UMAP algorithm as a nonlinear dimensionality reduction method, with a
particular focus on its parametric implementation. Through experiments on synthetic and real-world
datasets, we demonstrated UMAP’s effectiveness in revealing meaningful structures, validating its poten-
tial for visualization and data preprocessing in high-dimensional settings. Furthermore, we use insights
from the tangent spaces of differentiable manifolds to estimate the intrinsic dimension of the underlying
manifold structure of the data, which might help in heuristically determining the embedding dimension.

8This approach is heuristic and lacks formal justification, but it may still exhibit some patterns as shown in Figure 9.
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Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
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