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Introduction

Bayesian optimization (BO) is a popular optimization method for

black-box (i.e., lacks known special structures)

expensive-to-evaluate

noisy

objective functions.

With advantages such as:

Sample-efficiency;

Uncertainty quantification.

Curse of Dimensionality (CoD). The number of data points required
often grows exponentially with the dimensionality.

Hu Hanyang Unstructured High-Dimensional Bayesian Optimization September 20, 2024 3 / 34



Introduction

Bayesian optimization (BO) is a popular optimization method for

black-box (i.e., lacks known special structures)

expensive-to-evaluate

noisy

objective functions.

With advantages such as:

Sample-efficiency;

Uncertainty quantification.

Curse of Dimensionality (CoD). The number of data points required
often grows exponentially with the dimensionality.

Hu Hanyang Unstructured High-Dimensional Bayesian Optimization September 20, 2024 3 / 34



Introduction

Bayesian optimization (BO) is a popular optimization method for

black-box (i.e., lacks known special structures)

expensive-to-evaluate

noisy

objective functions.

With advantages such as:

Sample-efficiency;

Uncertainty quantification.

Curse of Dimensionality (CoD). The number of data points required
often grows exponentially with the dimensionality.

Hu Hanyang Unstructured High-Dimensional Bayesian Optimization September 20, 2024 3 / 34



Introduction

Typical methods for BO to overcome the CoD:

restrict to local search (e.g., TuRBO, GIBO)

assume low-dimensional structures (e.g., Add-GP-UCB, REMBO)

which are essentially aimed at reducing the assumed complexity.

Vanilla BO could be performant in high dimensions without imposing
structural assumptions - by simply incorporating low-complexity
assumptions in the prior of lengthscales.1

1Hvarfner, Hellsten, and Nardi, Vanilla Bayesian Optimization Performs Great in
High Dimensions.
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Introduction

What are the limitations of this approach?

Are there opportunities to improve upon it?
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Background

Algorithm 1 Pseudo Code for Bayesian Optimization

1: init X0 ⊆ X , y0 ⊆ R ▷ generate initial inputs and query observations
2: n← 1
3: for n ≤ N do
4: Fit (Xn−1, yn−1) to obtain a surrogate modelMn.
5: xn ← argmaxx∈X α(x |Mn) ▷ optimize acquisition function
6: Xn ← Xn−1 ∪ {xn}
7: yn ← yn−1 ∪ {f (xn) + wn}
8: n← n + 1
9: end for
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Surrogate Model: Gaussian Process

The Gaussian process (GP) provides a distribution over functions
f̂ ∼ GP(m(·), k(·, ·)) specified by the mean function m(·) and the
covariance function k(·, ·).

Posterior Inference for Gaussian Process Regression

Assume the observations are corrupted by i.i.d. Gaussian noise N (0, σ2
ε)

and m ≡ 0, then conditioned on (Xn, yn), the predictive distribution of the
observation y given input x is N (µn(x), kn(x)) where

µn(x) = kn(x)(Kn + σ2
ε I)

−1yn

kn(x, x
′) = k(x, x′)− kn(x)(Kn + σ2

ε I)
−1kTn (x)

with [Kn]i ,j = k(xi , xj) and [kn(x)]i = k(x, xi ) for i , j ∈ {1, . . . , n}.
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Surrogate Model: Gaussian Process

Radial Basis Function (RBF) Kernel

Let l ∈ RD
>0 be the lengthscales, the RBF kernel function is

k(x, x′) = exp

{
−1

2

d∑
i=1

(xi − x′i )
2

l2i

}

In this case, the covariance is only dependent on the weighted distance
between inputs, i.e. the RBF kernel is stationary.
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Acquisition Function: Expected Improvement

Expected Improvement (EI)

In the noiseless setting, EI can be computed analytically as

αEI(x |Xn, yn) = Ef (x) [[f (x)− ymax]+] = σn(x)h

(
µn(x)− ymax

σn(x)

)
where ymax = max1≤i≤n yi is the incumbent and h(z) = ϕ(z) + zΦ(z).

Remark. In the case of noisy observations, we could use Noisy EI (NEI),
which is MC-based and differs from EI at the choice of incumbent.
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Acquisition Function: Expected Improvement

EI selects a point in the Pareto-optimal set trading-off between exploration
and exploitation.2 See their illustration below:

2De Ath et al., “Greed Is Good: Exploration and Exploitation Trade-offs in Bayesian
Optimisation”.
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Revisit CoD for Vanilla BO

Hypercube Line Picking (Anderssen et al., 1976)

The mean distance between uniformly sampled points in a D-dimensional
unit hypercube, denoted by ∆(D), is Θ(

√
D). More specifically,

1

3

√
D ≤ ∆(D) ≤

√
D

6

√√√√1

3

[
1 + 2

√
1− 3

5D

]
<

√
D

6
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Dimensionality-Scaled Lengthscales Prior

Dimensionality-Scaled Lengthscale Prior (DSP)

To counteract the increase in complexity, Hvarfner et al. propose the DSP:

ln ∼ LN
(
µ0 +

logD

2
, σ0

)
where (µ0, σ0) are suitable parameters for a one-dimensional objective.

Remark. The mean and median of the prior scales up by a factor of
√
D.

Remark. They also show that when the model is uninformed, vanilla BO
exhibits local search behavior.
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Vanishing Gradient

This issue might worsen in high dimensions, take the Ackley function as an
example.3

3Ament et al., Unexpected Improvements to Expected Improvement for Bayesian
Optimization.
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Vanishing Gradient

Ament et al. propose the LogEI family which ensures numerical stability:

works better than EI when high objective values are concentrated in
regions of small volumes;

yet fails to outperform EI when the model itself is bad.

For high-dimensional settings, Rana et al. propose elastic GP.4

They show that larger lengthscales make acq. function optimization easier.

4Rana et al., “High Dimensional Bayesian Optimization with Elastic Gaussian
Process”.
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Unknown Gaussian Process Hyperparameters

The previous two issues seem to support larger lengthscales for BO in high
dimensions. However, if lengthscales are erroneously large, the algorithm
may miss the global optima.

See the following illustration from Berkenkamp et al.5:

5Berkenkamp, Schoellig, and Krause, “No-Regret Bayesian Optimization with
Unknown Hyperparameters”.

Hu Hanyang Unstructured High-Dimensional Bayesian Optimization September 20, 2024 16 / 34



Outline

1 Introduction and Background

2 Issues and Modifications of Vanilla BO in High Dimensions

3 Method 1: Lengthscales Cool Down

4 Method 2: Soft Winsorization

5 Experiments

6 Conclusions and Potential Refinements

Hu Hanyang Unstructured High-Dimensional Bayesian Optimization September 20, 2024 17 / 34



Lengthscales Cool Down - Meta Strategies

Methods for lengthscales cool down in the low-dimensional setting
typically start with an initial guess and shrink them with the proportions
being fixed (e.g. AR cool down, A-GP-UCB).

This may not apply to the high-dimensional settings:
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Lengthscales Cool Down - Meta Strategies

We consider the following alternatives to shrink the lengthscales:

Option 2 (Shrinking the prior of lengthscales)

Modify the DSP as

ln ∼ LN
(
µ0 +

logD

2
+ log L, σ0

)
where L ∈ [L̄, 1] is the base length evolving via certain strategies.

Option 3 (Shrinking the posterior of lengthscales)

Let l ′n be the lengthscales estimated from the posterior, shrink it via

ln = max(Ll ′n, l)

where L is the same as in option 2 and l̄ is a hard lower bound.
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Lengthscales Cool Down - Evolution of Base Length

Particular methods for evolving the base length L could be:

AR Cool Down (Wabersich et al.): optimize acquisition function
values with the hypothetically shrunk L and the current L respectively,
shrink L if the ratio of them is large enough.

Fixed Scheduler: shrinks L according to a pre-defined schedule
(potentially depending on the objective’s dimensionality);

Success/Failure Counter: inspired by TuRBO, expands L after τsucc
consecutive successes and shrinks L after τfail consecutive failures.

Remark. The success/failure counter can potentially recover the
preference for larger lengthscales. Furthermore, L tends to shrink when the
algorithm consecutively queries points of low posterior variance.
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Adaptive Simplification of Observations

Motivation. Rather than gradually make more complex assumptions, we
can try to simplify the observations.

What is a “simpler” objective? We could list a few attributes:

high objective values are not concentrated in small hypervolumes (i.e.
the shape is not too spiky);

less variability from perturbations;

easier to be modeled by GP (especially with larger lengthscales).

Remark. Multiplying a constant factor 0 < c < 1 does not help since the
observations are standardized.
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Adaptive Simplification of Observations

Soft Winsorization

We consider the following transformation of observations:

y′ = σk,C ((y − avg(y))/std(y))

where σk,C (·) is a modified sigmoid function defined by

σk,C (x) =
x

k

√
1 +

∣∣ x
C

∣∣k
Remark. Notice that

When k →∞, σk,C (·) approximates Winsorization.
When C →∞, σk,C (x)→ x for all x ∈ R.
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Adaptive Simplification of Observations

Winsorization is a technique used to restrict outliers.

For example, the set {−100,−2,−1, 0, 1, 2, 100} would be transformed to
{−2,−2,−1, 0, 1, 2, 2} after a 68% Winsorization.

Soft Winsorization could be deemed as a smooth approximation of
Winsorization. When C = 1, it is corresponding to 68% Winsorization.
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Adaptive Simplification of Observations

For GPs with low (or medium) complexity, objective functions after
simplification are deemed more probable.
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Adaptive Simplification of Observations

Limitation. Soft Winsorization relies on the estimation of mean and
standard deviation. In the context of BO, they might be biased.

Attempt. Use bootstrapping. Fit a GP on the original observation, sample
N points from the posterior, and use their mean and standard deviation.

Remark. This approach has led to performance degradation in most tasks.
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Optimization in the Presence of Outliers

Outperform vanilla BO on synthetic tasks (inject i.i.d. Uniform(−60, 60)
noise to 16.7% of observations):

More robust for robotics tasks (e.g. learning a 12-D heuristic controller for
the lunar lander) that vary a lot for even small perturbations:

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

vanilla BO 229.73± 27.34 −67.38± 97.84 41.65± 65.33 37.93± 105.82 70.20± 145.72

soft Winsorization 245.46± 24.53 18.02± 21.05 −15.90± 40.58 253.39± 48.16 259.26± 17.46
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Experiment Settings

Below are the hyperparameters we used during the experiments:

Vanilla BO (with DSP): µ0 =
√
2 and σ0 =

√
3;

Soft Winsorization (w/wo bootstrapping): k = 1 and C = 1.5;

AR Cool Down: thresholding at 1.0 (instead of 1.5);

Fixed Scheduler: shrink L by 0.7 for every 10
√
D iterations;

Success/Failure Counter: τsucc = 10 (instead of 3) and
τfail = max(4,D).
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Experiment Settings

For synthetic test functions, we deliberately pick those that are “difficult”.
E.g., the Ackley function, Griewank function, and egg holder function.

See the following illustrations.6

For real-world tasks, we choose Lasso-DNA (180D) and SVM (388D).

6Surjanovic and Bingham, Virtual Library of Simulation Experiments: Test Functions
and Datasets.
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Findings

1. Methods implemented using option 2 generally behave more similarly to
the vanilla BO compared with their counterpart using option 3.

Figure: EI values of the fixed scheduler using options 2 and 3 for the Ackley
function (left), the Griewank function (middle), and the Lasso DNA task (right).

Hu Hanyang Unstructured High-Dimensional Bayesian Optimization September 20, 2024 31 / 34



Findings

2. The success/failure counter is able to recover from over-exploration,
which might not relate to its potential to recover larger base lengths.

3. No methods consistently outperform the baseline.
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Conclusions and Potential Refinements

In this project, we explored methods attempting to make the model’s
assumption and the unknown objective function more aligned:

evolve base length L to scale the prior/posterior of lengthscales;

simplify observations via soft Winsorization.

Here are some possible refinements that could be done:

more holistic search of good hyperparameters;

explore ways to shrink the lengthscales non-linearly.
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