
Unstructured High-Dimensional Bayesian
Optimization

Hu Hanyang

Supervisor: Jonathan Scarlett

Department of Mathematics

National University of Singapore

Advanced UROPS in Mathematics for AY2023/2024, Special Term

Abstract

High-dimensional Bayesian optimization (BO) methods typically work by restricting the search space
or considering low-dimensional structures. It has recently been suggested that vanilla BO methods could
be performant in high dimensions with minor adjustments, such as imposing a low-complexity assumption
on the objective function via a dimensionality-scaled lengthscale prior (DSP). However, as a consequence
of the stationary kernel used in vanilla BO assuming the function to vary at a consistent rate over the
domain, the posterior lengthscales based on measurements could be misspecified when the ground truth
objective function does not meet this assumption. In case the estimated lengthscales are erroneously
large (especially under the low-complexity assumption), the ground truth objective function might not
be considered probable. Hence, DSP may risk the algorithm overlooking regions containing the global
optimum. Drawing inspiration from BO methods with unknown hyperparameters in low-dimensional
settings, we explore various lengthscale evolution strategies. In addition, we propose soft Winsorization,
an easy-to-implement method that attempts to adaptively reduce the objective function’s complexity,
aligning with the low-complexity assumption made by DSP. Our empirical analysis showcases the effec-
tiveness of soft Winsorization in managing extreme observation outliers. Furthermore, we evaluate the
lengthscale evolution strategies and soft Winsorization on several benchmark problems and investigate
their respective behaviors.

1 Introduction

Bayesian optimization (BO) is a popular method for optimizing expensive black-box functions with
noisy measurements, as it naturally provides a measure of uncertainty and could be sample-efficient by
incorporating prior knowledge in the surrogate model. However, BO suffers from the curse of dimen-
sionality [12], with severe performance degradation when scaling to high-dimensional settings. As the
dimensionality of the objective function increases, a substantially higher number of queries is needed to
explore the exponentially larger high-variance regions in the search space and make reasonable inferences
about additional hyperparameters in the surrogate model [4].

Consequently, many approaches proposed for high-dimensional BO attempt to (1) restrict the search
space in a local region [8, 16]; or (2) adhere to low-dimensional structural assumptions, such as additive
kernels [11] and low-dimensional active subspaces [7, 24]. Recently, Hvarfner et al. have proposed an
enhanced lengthscale prior that enables standard Bayesian optimization to outperform existing methods
in high-dimensional tasks, without imposing any structural assumptions [9]. Instead, they are assuming
that the objective function is simple enough to optimize globally since the Gaussian process surrogate
model with larger lengthscales considers less complex candidate functions [5].

However, we have noticed a potential issue with this approach in the aspect of estimating unknown
hyperparameters (i.e. lengthscales). Although the stationary kernel used in the Gaussian process sur-
rogate model of vanilla BO enjoys sample efficiency by assuming the objective function changes at a
consistent rate over the input space, when such an assumption is violated, it could lead to an erroneous
estimate of lengthscales and often causes the algorithm to converge to poor local optima [3]. Especially
under a low-complexity assumption, the algorithm might be more prone to overlooking the global optima
outside the Gaussian process’s confidence interval.

In this report, we aim to explore minor modifications to vanilla BO that could potentially improve
performance without imposing further structural assumptions. We investigate various lengthscale evo-
lution strategies inspired by BO methods in low-dimensional settings to alleviate the issue of unknown
hyperparameters [3, 22, 23]. Furthermore, we propose soft Winsorization, aiming to adaptively simplify
the standardized observations to align with low-complexity assumptions on the objective function. These
methods are evaluated and empirically investigated across multiple synthetic and real-world problems.

2 Background

2.1 Problem Statement

We consider the following expensive-to-evaluate black-box function optimization problem

x∗ = argmax
x∈X

f(x)

over the D-dimensional input space X = [0, 1]D, assuming that f can only be observed point-wise and
the measurements are subject to a Gaussian noise perturbation wn ∼ N (0, σ2

ε), i.e. yn = f(xn) + wn.

2.2 Gaussian Processes

The Gaussian process (GP) [18] provides a distribution over functions f̂ ∼ GP(m(·), k(·, ·)) spec-
ified by the mean function m(·) and the covariance function k(·, ·). Conditioned on the input Xn =
(x1, . . . ,xn) and observations yn = (y1, . . . , yn), the posterior distribution is GP(µn(·), kn(·, ·)), i.e. at a
given location x ∈ X , the value of the function f̂(x) is normally distributed with a closed-form solution
(involving m(·) and k(·, ·)) for the mean µn(x) and variance σ2

n(x) = kn(x,x).
More specifically, at a given location x ∈ X , take the covariance matrix Kn ∈ Rt×t such that

[Kn]i,j = k(xi,xj) for i, j ∈ {1, . . . , n} and the vector kn(x) = [k(x,x1), . . . , k(x,xn)], we have

µn(x) = m(x) + kn(x)(Kn + σ2
εI)

−1(yn −m(x))

kn(x,x
′) = k(x,x′)− kn(x)(Kn + σ2

εI)
−1kT

n (x)

In practice, we take m ≡ 0 so that the dynamics are fully modeled by k(·, ·). We also normalize the
inputs Xn (to make sure the domain is X = [0, 1]D) and standardize the observations yn, since these
settings work best in the BoTorch framework [2].

1

We focus on stationary kernels such that k(x,x′) = k(x−x′), i.e. the correlations are dependent only
on the weighted distance between inputs. The lengthscales l ∈ RD

>0 are hyperparameters that determine
the relative importance of different dimensions, which is called Automatic Relevance Determination
(ARD) [27]. Notice that a larger lengthscale indicates that the corresponding dimension is less active.
We use the Radial Basis Function (RBF) kernel [10] with ARD lengthscales as in the setting of vanilla
BO algorithms [9]:

k(x,x′) = exp

{
−1

2

d∑
i=1

(xi − x′
i)

2

l2i

}
Conventionally, l is found through maximum likelihood or maximum a posteriori (MAP) estimation.

2.3 Bayesian Optimization

Bayesian optimization uses a surrogate model (GP, in most cases) together with an acquisition func-
tion α(x |Xn,yn) to guide the search for the optimum. In the n-th iteration, the candidate point is
chosen as

x∗ = argmax
x∈X

α(x |Xn,yn)

which is then augmented (together with the observation) to the data to perform the next iteration.
The most common acquisition function is the expected improvement (EI) [15], defined by

αEI(x |Xn,yn) = Ef(x) [[f(x)− ymax]+] = σn(x)h

(
µn(x)− ymax

σn(x)

)
where ymax = max1≤i≤n yi is the incumbent and h(z) = ϕ(z) + zΦ(z).1 The candidate point chosen by
EI is in the Pareto-optimal set trading-off between exploitation (mean) and exploration (variance) [6].

3 Related Works

Several works have identified limitations of vanilla BO (especially in high-dimensional settings) and
proposed corresponding solutions, which we outline below.

3.1 Locality Issue

The expected distance between uniformly sampled points in a D-dimensional unit hypercube is
Θ(
√
D), i.e. it grows asymptotically as fast as

√
D [25]. Consequently, as the dimensionality of the

problem increases, the distance between data points tends to get larger, which leads to lower correlation
and higher model complexity. For kernels such as RBF and Matern− 5

2 , the covariance would decrease
exponentially with the squared distance weighted by lengthscales l. In the extreme case, we would have
K ≈ I, i.e. the model is uninformed.

Hvarfner et al. [9] have characterized the behavior of vanilla BO in such cases:

Theorem 3.1.1. (Lower Bound on EI Correlation). Assume that ymax > m(x∗), K = σfI and that the
candidate query x∗ = argmaxx∈X αEI(x) correlates with at most one observation. Then the correlation
ρ∗ = σ−2

f k(x∗,xinc) between the next query x∗ and the best-observed point xinc satisfies

ρ∗
√

1 + ρ∗

1− ρ∗
≥ ymax −m(x∗)

σf

where m(·) is the GP mean function.

Notice that a lower bound on correlation is equivalent to an upper bound on the weighted distance for
stationary kernels of which the covariance decreases with the distance. That is to say, the algorithm would
query at regions exceedingly close to the best-observed point repeatedly when the model is uninformed,
despite the existence of other high-variance regions, exhibiting local search behaviors.

1ϕ(·) and Φ(·) denote the pdf and cdf of the standard normal distribution respectively.

2

To overcome this locality issue, they propose a dimensionality-scaled lengthscale prior (DSP), which
shifts the location parameter µ of the log-normal prior of lengthscales by logD

2 and hence scales up the

mode and mean of the prior distribution by a factor of
√
D:

ln ∼ LN
(
µ0 +

logD

2
, σ0

)
where (µ0, σ0) are suitable parameters for a one-dimensional objective.

3.2 Vanishing Gradient

Intuitively, as more data is observed, the likelihood of improving over the incumbent rapidly decreases.
Although EI is never analytically zero under a Gaussian process posterior, it (and its gradient) often
vanishes numerically, making gradient-based optimization exceptionally difficult [1]. Especially under
high-dimensional settings, the values and gradients of EI are often diminutive in large regions of the
domain, and random initialization for optimization likely falls in these regions. [17].

Ament et al. [1] have derived a bound on the probability of encountering numerically vanishing
normalized predicted improvement (µn(x) − ymax)/σn(x) [6] using samples from the distribution Px to
initialize the optimization of the acquisition function.

Theorem 3.2.1. Suppose f is drawn from a Gaussian process prior Pf , fmax is the global optimum of
the ground truth function, ymax ≤ fmax, µn, σn are the mean and standard deviation of the posterior
Pf (f | Xn) and B ∈ R. Then with probability 1− δ,

Px

(
µn(x)− ymax

σn(x)
< B

)
≥ Px(f(x) < fmax − εn)

where εn = (fmax − ymax) + (
√
−2 log 2δ −B)maxx σn(x).

Consequently, as a BO algorithm closes the simple regret fmax− ymax, the RHS increases, and hence
(µn(x) − ymax)/σn(x) is more likely to be small so that EI exhibit numerically vanishing gradients.
Furthermore, if the inputs that give rise to high objective values (≈ fmax) are concentrated, the RHS
will drop slowly as εn increases, remaining a high lower bound, such as the Ackley function. They
claim that this issue might worsen as the dimensionality grows. To overcome the issue of vanishing
gradient, they have introduced the LogEI family of acquisition functions that have either identical or
approximately equal optima as their canonical counterparts but behave much better numerically.

On another note, Rana et al. [17] have proposed the elastic GP method to deal with the vanishing
gradient issue in high-dimensional settings specifically. They have shown that (1) gradients of the acqui-
sition functions become significant for sufficiently large lengthscales; and (2) the extrema of acquisition
functions change smoothly as the lengthscales change. Consequently, they start with large lengthscales
that do not lead to vanishing gradients and gradually shrink to the learned lengthscales, using the ex-
tremum obtained with the previous lengthscales as the initial point to optimize the acquisition function
with the shrunk lengthscales.

3.3 Unknown Gaussian Process Hyperparameters

Previous subsections have discussed how having a preference for large lengthscales could alleviate the
locality issue and vanishing gradient in the high-dimensional setting. However, directly applying such
methods would implicitly assume that the objective has low complexity [9]. In case such an assumption
is false, the model would tend to underfit with the observations and get stuck in local optima [3]. A
typical strategy to deal with this issue of unknown hyperparameters is to cool down lengthscales along
the optimization process.

Wabersich et al. [22] have proposed the alpha ratio (AR) cool down strategy which uses the acquisition
function values to determine whether to shrink the lengthscales. They choose a constant lower bound on
lengthscales l. For each iteration, let ln−1 be the lengthscales used in the previous iteration and α∗

n(l) :=
maxx∈X α(x |Xn−1,yn−1, l) be the optimal acquisition function value given observations (Xn−1,yn−1)
and lengthscales l. Put l′n = max(l, ln−1/2), if the alpha ratio αr,n := α∗

n(l
′
n)/α

∗
n(ln−1) is larger than a

certain threshold (e.g. αr,n > 1.5), take ln = l′n; otherwise, keep ln = ln−1.

3

Berkenkamp et al. [3] have proposed adaptive GP-UCB (A-GP-UCB) which scales down the length-
scales and scales up the RKHS norm bound (which expands the GP’s confidence intervals) according
to schedulers that may depend on the data collected so far at each iteration. In doing so, A-GP-UCB
gradually expands the space of candidate functions for consideration.

Notice that both methods mentioned above start with an initial guess of lengthscales l0 and gradually
shrink them without altering the model’s weighting of different dimensions’ relative significance (charac-
terized by the proportion of lengthscales). In contrast to directly shrinking the estimated lengthscales,
Wang et al. [23] have proposed to reduce the upper bound on lengthscales and restrict lengthscales
estimation within the evolving bounds, with the assumption that an upper bound on the lengthscales
exists. They lower the upper bound of lengthscales when the algorithm repeatedly queries points of low
posterior variance in comparison with the noise variance.

4 Methods

4.1 Lengthscales Cool Down

We maintain a base length L ∈ [L̄, 1] (L̄ > 0) and evolve them with different strategies (e.g. AR cool
down). We consider the following meta-strategies, which affect lengthscales via L in different manners:

Option 1. We could directly follow the practice in low-dimensional settings [3, 22], i.e. keep the
proportion of lengthscales fixed during the entire optimization process. In this case, given the initial
estimation l0, the lengthscales at the n-th iteration should be ln = Ll0. Notice that this practice in
low-dimensional settings may not be directly applicable to higher dimensions when a larger number
of hyperparameters need to be estimated, although the algorithm could sample more points at the
initializing stage for problems of higher dimensions. We have observed that the initial guess l0 may
not reflect the importance of different dimensions in synthetic functions embedded in high-dimensional
space, as shown in Figure 1. Consequently, this meta-strategy is not implemented.

(a) (b) (c)

(d) (e) (f)

Figure 1: Box plots indicating distributions of lengthscales for the first 8 dimensions estimated for vanilla
BO running on sparse synthetic test functions embedded in 25-dimensional space over 5 repetitions, at
the 16th and 100th iterations respectively. During the initialization stage, 3

√
D = 15 points are generated

from the Sobol engine. However, the model initially fails to identify the active dimensions, which are
only recognized later in the optimization process.

4

Option 2. Alternatively, we could modify the log-normal prior in Section 3.1 to

ln ∼ LN
(
µ0 +

logD

2
+ logL, σ0

)
When L ≤ 1/

√
D, the model resumes the high-complexity assumption.

Option 3. Even if the model assumes high complexity on the objective (i.e. the prior is suggestive
of short lengthscales), the posterior probability mass may still be concentrated around lengthscales that
are erroneously larger since stationary kernels do not consider functions of varying rates of change to
be likely [3]. Consequently, the third option is to scale the posterior lengthscales by the base length L
directly, i.e.

l′n ∼ LN
(
µ0 +

logD

2
, σ0

)
ln = max(Ll′n, l)

Lengthscales Cool Down Option 1 (not implemented)

1: init X0 ⊆ X , y0 ⊆ R ▷ generate initial inputs, the size depends on dimension
2: init l0 ∈ RD

>0 ▷ E.g., via ML/MAP estimation
3: L← 1, n← 1
4: for n ≤ N do
5: y′

n−1 ← (yn−1 − avg(yn−1))/std(yn−1) ▷ standardize the observations
6: if should shrink(Xn−1,y

′
n−1, L, n) then

7: L← max(L/2, L̄)
8: end if
9: ln ← max(Ll0, l̄) ▷ proportions of lengthscales on different dimensions are fixed

10: xn ← argmaxx∈X α(x |Xn−1,y
′
n−1, ln) ▷ optimize acquisition function value

11: Xn ← Xn−1 ∪ {xn}
12: yn ← yn−1 ∪ {f(xn) + wn} ▷ query new sample (subject to random noise)
13: n← n+ 1
14: end for

Lengthscales Cool Down Option 2

1: init X0 ⊆ X , y0 ⊆ R, and l0 ∈ RD
>0

2: L← 1, n← 1
3: for n ≤ N do
4: y′

n−1 ← (yn−1 − avg(yn−1))/std(yn−1)
5: if should shrink(Xn−1,y

′
n−1, L, n) then

6: L← max(L/2, L̄)
7: end if
8: ln ← MAP(Xn−1,y

′
n−1, L)

9: xn ← argmaxx∈X α(x |Xn−1,y
′
n−1, ln)

10: Xn ← Xn−1 ∪ {xn}
11: yn ← yn−1 ∪ {f(xn) + wn}
12: n← n+ 1
13: end for
14:

Lengthscales Cool Down Option 3

1: init X0 ⊆ X , y0 ⊆ R, and l0 ∈ RD
>0

2: L← 1, n← 1
3: for n ≤ N do
4: y′

n−1 ← (y′
n−1 − avg(yn−1))/std(yn−1)

5: if should shrink(Xn−1,y
′
n−1, L, n) then

6: L← max(L/2, L̄)
7: end if
8: l′n ← MAP(Xn−1,y

′
n−1, 1)

9: ln ← max(Ll′n, l̄)
10: xn ← argmaxx∈X α(x |Xn−1,y

′
n−1, ln)

11: Xn ← Xn−1 ∪ {xn}
12: yn ← yn−1 ∪ {f(xn) + wn}
13: n← n+ 1
14: end for

On particular strategies to evolve the base length L, we may try out alternative methods (i.e.,
modifying the should_shrink method) other than AR cool down, such as a fixed lengthscale scheduler
that gradually shrinks lengthscales according to a pre-defined schedule (potentially depending on the
objective’s dimensionality).

We could also use a success/failure counter inspired by TuRBO [8] to evolve the base length L, i.e.
L expands after τsucc consecutive successes and shrinks after τfail consecutive failures, where “success”

5

and “failure” are regarding whether the candidate has improved upon the previous best observation.
The potential benefit of this TuRBO-like approach is that there are chances to restore the preference for
larger lengthscales. Moreover, it might implicitly incorporate the mechanism suggested by Wang et al.
[23] mentioned in Section 3.3. When the algorithm repeatedly samples points of low posterior variance,
the sampled points tend to have low probabilities of improvement (PI), i.e. it becomes more likely to
fail in making improvements to the incumbent. This is because PI at the queried point x∗ decreases as
the posterior variance σ2

n(x∗) decreases when ymax > µn(x∗) [6].

4.2 Soft Winsorization

4.2.1 Adaptive Simplification of Observations

Sections 3.1 and 3.2 suggest that a “simpler” assumption on the objective makes the algorithm less
likely to suffer from the locality issue and vanishing gradient. Section 3.3 also discusses the concern
of unknown hyperparameters, particularly when the objective function does not align with the model’s
assumptions. Consequently, it is natural to ponder: since we made a low-complexity assumption on the
objective, instead of gradually making more complex assumptions (e.g. lengthscales cool down), can we
simply transform the objective (or observed values) to make it appear “simpler”?

For a “simpler” objective, it could have lower ymax and less concentrated regions of high values,
or be more likely to be contained in the GP’s confidence interval under a low-complexity assumption.
Directly scaling by a constant factor c < 1 would not help in practice since the observed values are
standardized before being fitted by the GP surrogate. Consequently, we apply a sigmoid function to the
standardized observed values, conjecturing that it can implicitly simplify the objective (Alg. 4). We
choose σk(y) = y(k

√
1 + |y|k)−1 where k is a positive integer. Notice that σk(·) is strictly monotonic,

hence the optima after simplification should be identical to that of the original objective function.
Furthermore, this transformation can be interpreted as applying “soft” Winsorization (i.e. a smooth
approximation of Winsorization, as shown in Figure 2(a)) to the observed data, since it is equivalent to a
68% Winsorization2 when k →∞. This percentage can be changed by scaling the sigmoid function σk(·),
i.e. we can choose a constant C > 0 and put σk,C = Cσk(y/C). When C → ∞, we have σk,C(y) → y
for all y ∈ R.

(a) (b)

Figure 2: (a) As k → ∞, σk(·) would take values below −1 as −1 and values above 1 as 1. Since
the data is standardized, this is equivalent to applying 68% Winsorization to the observed values. (b)
The standardized 1D Levy function and a standardized spiky function f(x) = (|x|/100)1/4 before and
after applying the sigmoid function σk,C(y) (k = 1, C = 1.5) and being re-standardized. Notice that
standardized values that are far from the origin are scaled adaptively. The 1D Levy function is not
changed too much since it is simple already, yet f(x) = (|x|/100)1/4 is simplified with a less spiky shape.

2Winsorization is the transformation of statistics to alleviate the effect of outliers [26]. A 68% Winsorization would set
all data below the 16th percentile to the 16th percentile, and data above the 84th percentile to the 84th percentile, i.e.
data that are not within 1 standard deviation from the mean are considered outliers and are restricted.

6

Figure 2(b) and 3 demonstrate how soft Winsorization might be useful in the context of Gaussian
process regression with low-complexity assumption. Notably, it could simplify objective functions adap-
tively, with a minor impact on simple objectives such as the Levy function, and more obvious twists for
hard objectives with spiky regions, such as the Ackley function or f(x) = (|x|/100)1/4.

(a) (b)

Figure 3: In the context of GP regression, the simplified functions (for the 1D Ackley function and
f(x) = (|x|/100)1/4 respectively) are more likely to be contained in the GP’s 95% confidence intervals
with a low-complexity assumption (l = 2.0).

However, if the objective has a highly oscillatory landscape, such as the Griewank function, soft
Winsorization may not alleviate these oscillations. In addition, the inputs would not be evenly distributed
in the BO context. For example, when the BO algorithm turns toward more exploitation, the input would
concentrate on regions that give rise to higher values. Hence, the mean and standard deviation of the
observations would be biased, and it could be difficult to interpret the effect of soft Winsorization in
such a situation.

Alternatively, instead of applying soft Winsorization to standardized observations directly, we may
utilize a bootstrapping approach in practice - we fit a separate GP surrogate model with the standardized
observations, sample N = 1024 points from this model, and use them to estimate the mean and standard
deviation (Alg. 5). By applying bootstrapping, the issue of concentrated inputs could be alleviated.
However, we have observed performance degradation for this approach in most of our experiments.

Soft Winsorization (not Bootstrapped)

1: init k ∈ N, C ∈ R>0

2: init X0 ⊆ X , y0 ⊆ R, and l0 ∈ RD
>0

3: L← 1, n← 1
4: for n ≤ N do
5: y′

n−1 ← (yn−1 − avg(yn−1))/std(yn−1)
6: y′

n−1 ← σk,C(y
′
n−1)

7: y′
n−1 ← (y′

n−1 − avg(y′
n−1))/std(y

′
n−1)

8: ln ← MAP(Xn−1,y
′
n−1, 1)

9: xn ← argmaxx∈X α(x |Xn−1,y
′
n−1, ln)

10: Xn ← Xn−1 ∪ {xn}
11: yn ← yn−1 ∪ {f(xn) + wn}
12: n← n+ 1
13: end for
14:

15:

16:

Soft Winsorization (Bootstrapped)

1: init k ∈ N, C ∈ R>0, N ∈ N
2: init X0 ⊆ X , y0 ⊆ R, and l0 ∈ RD

>0

3: L← 1, n← 1
4: for n ≤ N do
5: y′

n−1 ← (yn−1 − avg(yn−1))/std(yn−1)
6: l′n ← MAP(Xn−1,y

′
n−1, 1)

7: Fit GP with (Xn−1,y
′
n−1) and l′n

8: Sample N points (X′,y′) from GP posterior
9: y′′

n−1 ← σk,C((y
′
n−1 − avg(y′))/std(y′))

10: y′′
n−1 ← (y′′

n−1 − avg(y′′
n−1))/std(y

′′
n−1)

11: ln ← MAP(Xn−1,y
′′
n−1, 1)

12: xn ← argmaxx∈X α(x |Xn−1,y
′′
n−1, ln)

13: Xn ← Xn−1 ∪ {xn}
14: yn ← yn−1 ∪ {f(xn) + wn}
15: n← n+ 1
16: end for

7

4.2.2 Optimization in the Presence of Outliers

Gaussian processes and Bayesian optimization are generally disadvantaged when the observations
are subject to severe variability, i.e. populated by outliers [14, 19]. Since Winsorization is known
as a technique to overcome outliers, we may hope it could mitigate the issue of extremely outlying
observations. Figure 4 has shown that soft Winsorization outperforms vanilla BO on synthetic tasks
in the setting with large random noise (i.i.d. sampled from Uniform(−60, 60), injected to 16.7% of the
observations), even in low dimensions.

(a) (b)

Figure 4: Synthetic Test Functions with Large Uniform Noise. To demonstrate the ability of these
methods to optimize robustly, we have recorded the best-so-far re-evaluations of the queried points
without injecting large random noises. Each strategy runs with 10 repetitions. The consistency of each
method’s performance is measured by the median absolute deviation (MAD) of the best values over
repeated runs. (a) Average log best values of the points queried by different strategies for the Levy
function in 4-dimensional space, soft Winsorization seems to perform stabler. (b) Average best values
of the points queried by different strategies for the Hartmann function in 6-dimensional space. Notably,
soft Winsorization could improve performance while vanilla BO rarely queried better points after the
random initialization.

We have also compared the performance between vanilla BO and soft Winsorization on an envi-
ronment in OpenAI Gymnasium [21], since simulations in such environments are generally sensitive to
even tiny perturbations. We have taken the lunar lander task as an example. This is a classic rocket
trajectory optimization problem to determine whether to fire engines of one direction (left, right, or up)
or do nothing based on the input providing the coordinates, linear/angular velocities, and other sensor
information [21]. Similar to the experiment settings in TuRBO [8], we use a heuristic controller with
12 learnable parameters and set the INITIAL_RANDOM variable to 1500 to give more uncertainty to the
initial position of the lunar lander. We run each method for 5 repeated trials. For each trial, n = 200
points are queried. We put batch size q = 1 instead of q = 50 in TuRBO’s setting. Instead of plotting
the best values observed in each iteration for each method, we extract the policy after the optimization
process and compare their performance across 100 simulations. More specifically, we select parameters
with the highest lower confidence bound x∗ = argmaxx∈X µn(x)−βσn(x) from the GP posterior (where
we take β = 1). The results are demonstrated in Table 1.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
vanilla BO 229.73± 27.34 −67.38± 97.84 41.65± 65.33 37.93± 105.82 70.20± 145.72
soft Winsorization 245.46± 24.53 18.02± 21.05 −15.90± 40.58 253.39± 48.16 259.26± 17.46

Table 1: Lunar Lander. The mean and standard deviation of the cumulative rewards in 100 simulations
for the parameters selected by vanilla BO and soft Winsorization in each trial. Parameters selected by
soft Winsorization tend to perform better (except in Trial 3) and behave more consistently.

8

5 Results

We compare vanilla BO (with DSP), soft Winsorization (k = 1, C = 1.5) with or without bootstrap-
ping, AR cool down (thresholding at 1.0), success/failure counter (with τsucc = 10 and τfail = max(4, D)
depending on the objective’s dimension D), and a fixed scheduler that shrinks the base length L by 0.7
for every 10

√
D iterations, taking the average of performance over 5 repetitions. For each lengthscales

cool down strategy, we have implemented them using option 2 and option 3 (labeled as opt2 and opt3)
respectively as discussed in Section 4.1. Following the practice in Hvarfner et al. [9], we set µ0 =

√
2

and σ0 =
√
3 for the DSP, and use qLogNEI (with q = 1) from the Noisy EI family [13] instead of the

analytical EI described in Section 2.3. The major difference between qLogNEI and qLogEI is the choice
of incumbent [1].

On another note, the base length L of AR cool down opt2 dropped rapidly as its threshold was
triggered easier than that of its counterpart using option 3. Hence the method raised errors indicating
that the optimizer cannot find a MAP estimation numerically. We omit this approach in our experiments
due to its numerical instability.

Generally, we observe that all lengthscales cool down methods using option 2 have delivered relatively
similar performance to the vanilla BO baseline (especially obvious in the experiment on the egg holder
function), suggesting that modifying parameters in the prior of lengthscales (option 2) has less effect on
the performance compared with directly scaling the posterior lengthscales (option 3). This could also be
observed from the comparative plot for analytical EI values of the fixed scheduler method implemented
in options 2 and 3 respectively.3 The method using option 2 is usually less sensitive to the shrinkage of
the base length L, as shown in the figures.

In addition, we observe that the success/failure counter method (option 3) could recover from over-
exploration. This is demonstrated in the experiments on the Ackley function and the Griewank function,
both of which have their global optimum at the origin [2].

5.1 Synthetic Test Functions

We use sparse synthetic test functions embedded in 25-dimensional space implemented in the BoTorch
library [2] to compare the performance of lengthscales cool down strategies and the soft Winsorization
method to that of the vanilla BO baseline. We deliberately choose synthetic functions that are considered
to be “hard” by having multiple local optima and/or concentrated regions that give rise to high values, e.g.
the Ackley function, Griewank function, and egg holder function. Furthermore, we perturb observations
with random noise of standard deviation σε = 10−2.

5.1.1 Ackley Function

We evaluate different strategies on ackley4_25, i.e. 4-dimensional Ackley function embedded in
25-dimensional space. Figure 5(a) demonstrates the average log best values for each method at each
iteration. Although we do not present the consistency of each method by their MAD, We have observed
that the AR cool down method is relatively unstable, while the fixed scheduler method (option 3)
outperformed the rest and delivered consistent performance. Figure 5(b) demonstrates the expected
improvement of the point to query for the fixed scheduler strategy (with seed=43). Observe that the EI
values for fixed scheduler opt3 have lifted when the base length L shrinks. On the other hand, such
a pattern appears less obvious for fixed scheduler opt2.

Since the global optimum of the Ackley function is at the origin [2], we plot the average log distances
of the queried points to the origin for each method at each iteration in Figure 5(c) to understand the
exploration/exploitation behavior of different approaches visually. We only use the coordinates of the
important dimensions (i.e., the first 4 dimensions for ackley4_25) to compute the distance. The distance
plots of soft Winsorization (bootstrapped), fixed scheduler (option 2), and success/failure counter (option
2) are omitted since they have demonstrated similar behavior to that of the vanilla BO baseline.

3The small discrepancies in EI values before the first base length shrinkage takes place are unexpected. We conjecture
that these differences might be attributed to some numerical errors.

9

5.1.2 Griewank Function

The Griewank function has widely spread local optima and a global optimum at the origin similar
to the Ackley function [2], with a particularly oscillatory landscape. We evaluate different strategies on
griewank6_25. The results are shown in Figure 6. Notice that all methods fail to surpass the vanilla
BO baseline in this experiment.

Similarly, we plot the average log distances of the queried points to the origin for each method at
each iteration in Figure 6(c), with only the first 6 important dimensions of the sparse synthetic function
taken into consideration.

(a) (b) (c)

Figure 5: Ackley Function. (a) Soft Winsorization (k = 1, C = 1.5) without bootstrapping and the
methods that shrink lengthscales via option 3 surpassed the performance of vanilla BO and their coun-
terpart using option 2 (if any, which also surpassed the baseline). (b) For the fixed scheduler method, EI
values lift at iterations 65, 115, and 165 when the base length L shrinks. (c) Vanilla BO, fixed scheduler
(option 2), success/failure counter (option 2), and soft Winsorization (w/wo bootstrapping) tend to be
more explorative, whilst AR cool down and fixed scheduler (option 3) tend to be more exploitative. The
success/failure counter (option 3) could recover from exploration to exploitation.

(a) (b) (c)

Figure 6: Griewank Function. (a) Vanilla BO performs better than soft Winsorization (k = 1, C = 1.5)
w/wo bootstrapping and all lengthscales shrinking methods on average. (b) For the fixed scheduler
method (option 3), EI values lift at iteration 165. For its counterpart using option 2, such behavior is
not observed. (c) AR cool down (option 3) has reached closest to the origin on average, whilst lengthscales
cool down methods using option 3 (except AR cool down) have started exploring regions far from the
origin. The success/failure counter (option 3) could recover from exploration to exploitation.

5.1.3 Egg Holder Function

We also test those strategies on eggholder2_25 (which has many local optima) with similar settings.
The results are shown in Figure 7, and the soft Winsorization (k = 1, C = 1.5) approach without
bootstrapping performs the best among all tested methods. Notice that the performance of lengthscales
cool down methods implemented in option 2 are generally similar to that of the vanilla BO baseline.

10

(a) (b)

Figure 7: Egg Holder Function. (a) Soft Winsorization (k = 1, C = 1.5) w/wo bootstrapping, fixed
scheduler (option 2), and success/failure counter (option 2) surpassed the performance of vanilla BO on
average. On the other hand, methods implemented using option 3 have delivered similar performance,
below that of the baseline. (b) For the fixed scheduler, EI values lift at iterations 65, 115, and 165 when
the base length L shrinks.

5.2 Real-World Tasks

5.2.1 Lasso-DNA

Lasso is a linear regression technique that minimizes the residual sum of squares subject to a hard
upper bound on the ℓ1 norm of the coefficients, which tends to produce a sparse model with only a few
non-zero coefficients, favoring the typical situation when the number of observations is relatively small
comparing to the number of features [20]. We run experiments on Lasso-DNA [28], which is a high-
dimensional hyperparameter optimization (HD-HPO) problem to find separate constant constraints for
different features, given 2000 data points with 180 features (approximately 43 active dimensions), the
results are displayed in Figure 8. We observe that the base length L for the AR cool down approach
rarely changes during the experiment.

(a) (b)

Figure 8: Lasso-DNA Task. (a) The success/failure counter (option 3) outperforms other methods. The
omitted performance of AR cool down (option 3) and success/failure counter (option 2) are almost the
same as that of vanilla BO. (b) For fixed scheduler (option 3), the EI values lift at iteration 175, 310,
445, and 580. Such behavior is not observed for its counterpart using option 2.

11

5.2.2 Hyperparameter Tuning of an SVM

This is a hyperparameter tuning problem for training a kernel support vector machine (SVM) with
385-dimensional data and 3 regularization parameters, i.e. the problem has 388 dimensions in total with
only a small number of them being important [7]. The results are shown in Figure 9.

(a) (b)

Figure 9: SVM. (a) Soft Winsorization (k = 1, C = 1.5) w/wo bootstrapping has performed worse
compared to the baseline. The omitted performance of the success/failure counter (options 2 and 3) and
the fixed scheduler (option 2) are almost identical to that of the vanilla BO baseline. (b) For the fixed
scheduler method, EI values lift at iterations 257 and 454 when the base length L shrinks.

6 Discussion

6.1 The Behavior of Success/Failure Counter

We could not definitively conclude that the observed behavior of success/failure counter opt3

in recovering from over-exploration to exploitation is attributed to its ability to restore the preference
for larger lengthscales as aforementioned in Section 4.1. Note that our choice of the success tolerance,
τsucc = 10, follows from the BoTorch tutorials [2] and differs from the original setting of τsucc = 3 for
TuRBO-1 [8]. This higher success tolerance makes the base length L less likely to expand and restore the
original value after shrinkage. However, we observe that the behavior of recovering from over-exploration
appears more obvious with a larger success tolerance, as demonstrated in Figure 10.

Figure 10: Comparison of performance and exploration/exploitation behavior of success/failure counter
(option 3) with different success tolerances, on the Ackley function (left) and Griewank function (right).
The plots do not demonstrate a clear advantage of choosing τsucc = 3 over τsucc = 10 in terms of
performance. However, the ability to recover from over-exploration is more obvious for the latter.

12

6.2 Potential Future Refinements

We reiterate that none of the methods we have tested consistently outperforms the vanilla BO baseline
with the specified settings in Section 5. This may necessitate more systematic and holistic investigations
to identify a set of good hyperparameters across problems of varying dimensions.

Moreover, we attempt to identify opportunities to refine these methods in the future. For example, the
lengthscales cool down methods explored in this report linearly scale the prior/posterior of lengthscales
according to the evolving base length L, which might be somewhat arbitrary. We could potentially
explore non-linear methods to shrink the lengthscales, with relatively more impacts on dimensions that
are originally identified as inactive.

7 Conclusions

Hvarfner et al. [9] have shown that what essentially hinders vanilla BO in high-dimensional settings
is the assumed complexity of the objective, instead of the dimensionality. Hence, they propose DSP
which scales the lengthscales prior with increasing dimensionality, assuming the objective function is of
low complexity and without tailoring to specific structural assumptions. Building upon this work, we
seek to explore potential improvements, such as:

1. Evolving (mainly shrinking) the prior/posterior of lengthscales;

2. Simplifying observations, hence implicitly simplifying the objective.

Both directions attempt to adaptively make the model’s assumption and the unknown ground truth
objective function more aligned. However, these methods are not off-the-shelf solutions and introduce
additional hyperparameters that might be critical to performance to be tuned, for example as the step
length for the fixed scheduler, the success/failure tolerance τsucc, τfail, and k,C for soft Winsorization.

Nevertheless, we still have some observations regarding certain behaviors of these methods, which
might be useful in applications or worth further investigation:

1. Lengthscales evolution methods using option 3 generally have stronger impacts on the performance
(either positive or negative) compared to methods using option 2;

2. The success/failure counter (option 3) is more likely able to recover from over-exploration to ex-
ploitation compared to other lengthscales cool down methods;

3. Soft Winsorization might be better at dealing with the existence of extreme outliers.

13

References

[1] Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Un-
expected improvements to expected improvement for bayesian optimization, 2024.

[2] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian
optimization, 2020.

[3] Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause. No-regret bayesian optimization with
unknown hyperparameters. Journal of Machine Learning Research, 20(50):1–24, 2019.

[4] Mickael Binois and Nathan Wycoff. A survey on high-dimensional gaussian process modeling with
application to bayesian optimization, 2022.

[5] Adam D. Bull. Convergence rates of efficient global optimization algorithms, 2011.

[6] George De Ath, Richard M. Everson, Alma A. M. Rahat, and Jonathan E. Fieldsend. Greed is
good: Exploration and exploitation trade-offs in bayesian optimisation. ACM Transactions on
Evolutionary Learning and Optimization, 1(1):1–22, April 2021.

[7] David Eriksson and Martin Jankowiak. High-dimensional bayesian optimization with sparse axis-
aligned subspaces, 2021.

[8] David Eriksson, Michael Pearce, Jacob R Gardner, Ryan Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization, 2020.

[9] Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla bayesian optimization performs great
in high dimensions, 2024.

[10] Donald R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal
of Global Optimization, 21(4):345–383, 2001.

[11] Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos. High dimensional bayesian optimi-
sation and bandits via additive models, 2016.

[12] Mario Köppen. The curse of dimensionality. 5th online world conference on soft computing in
industrial applications (WSC5), 2000.

[13] Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained bayesian
optimization with noisy experiments, 2018.

[14] Ruben Martinez-Cantin, Kevin Tee, and Michael McCourt. Practical bayesian optimization in the
presence of outliers, 2017.

[15] J. Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian methods for seeking
the extremum, volume 2, pages 117–129. 09 2014.

[16] Sarah Müller, Alexander von Rohr, and Sebastian Trimpe. Local policy search with bayesian opti-
mization, 2021.

[17] Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, and Svetha Venkatesh. High dimensional Bayesian
optimization with elastic Gaussian process. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 2883–2891. PMLR, 06–11 Aug 2017.

[18] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 11 2005.

[19] Somya Sharma and Snigdhansu Chatterjee. Winsorization for robust bayesian neural networks.
Entropy (Basel), 23(11):1546, November 2021.

14

[20] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society (Series B), 58:267–288, 1996.

[21] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023.

[22] Kim Peter Wabersich and Marc Toussaint. Advancing bayesian optimization: The mixed-global-
local (mgl) kernel and length-scale cool down, 2016.

[23] Ziyu Wang and Nando de Freitas. Theoretical analysis of bayesian optimisation with unknown
gaussian process hyper-parameters, 2014.

[24] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Freitas. Bayesian opti-
mization in a billion dimensions via random embeddings, 2016.

[25] Eric W. Weisstein. Hypercube line picking.

[26] Rand Wilcox. Trimming and Winsorization, volume 6. 07 2005.

[27] Christopher Williams and Carl Rasmussen. Gaussian processes for regression. In D. Touretzky, M.C.
Mozer, and M. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8.
MIT Press, 1995.

[28] Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-
dimensional hyperparameter optimization benchmark suite for lasso, 2022.

15

Appendix

A.1 Exploration/Exploitation Behavior of Different Strategies

Instead of plotting the distance from the queried points to the origin (which only makes sense to the
Ackley function and Griewank function), we plot the distance to the incumbent here.

(a) (b) (c)

Figure 11: Average distance of queried points to the incumbent for different methods on the synthetic
test functions. The distance is only computed on the important dimensions. For clarity, we remove the
plot for some methods.

(a) (b)

Figure 12: Average distance of queried points to the incumbent for different methods on the real-
world tasks. The success/failure counter (option 3) has demonstrated the ability to recover from over-
exploration in the Lasso DNA task.

16

	Introduction
	Background
	Problem Statement
	Gaussian Processes
	Bayesian Optimization

	Related Works
	Locality Issue
	Vanishing Gradient
	Unknown Gaussian Process Hyperparameters

	Methods
	Lengthscales Cool Down
	Soft Winsorization
	Adaptive Simplification of Observations
	Optimization in the Presence of Outliers

	Results
	Synthetic Test Functions
	Ackley Function
	Griewank Function
	Egg Holder Function

	Real-World Tasks
	Lasso-DNA
	Hyperparameter Tuning of an SVM

	Discussion
	The Behavior of Success/Failure Counter
	Potential Future Refinements

	Conclusions

